• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constrained Coding and Signal Processing for Holography

Garani, Shayan Srinivasa 05 July 2006 (has links)
The increasing demand for high density storage devices has led to innovative data recording paradigms like optical holographic memories that record and read data in a two-dimensional page-oriented manner. In order to overcome the effects of inter-symbol-interference and noise in holographic channels, sophisticated constrained modulation codes and error correction codes are needed in these systems. This dissertation deals with the information-theoretic and signal processing aspects of holographic storage. On the information-theoretic front, the capacity of two-dimensional runlength-limited channels is analyzed. The construction of two-dimensional runlength-limited codes achieving the capacity lower bounds is discussed. This is a theoretical study on one of the open problems in symbolic dynamics and mathematical physics. The analysis of achievable storage density in holographic channels is useful for building practical systems. In this work, fundamental limits for the achievable volumetric storage density in holographic channels dominated by optical scattering are analyzed for two different recording mechanisms, namely angle multiplexed holography and localized recording. Pixel misregistration is an important signal processing problem in holographic systems. In this dissertation, algorithms for compensating two-dimensional translation and rotational misalignments are discussed and analyzed for Nyquist size apertures with low fill factors. These techniques are applicable for general optical imaging systems

Page generated in 0.4194 seconds