• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instrumentation for far infrared reflectivity measurements with particular application to the oxidation of titanium

Cathcart, James Michael 05 1900 (has links)
No description available.
2

TEN MICRON POLARIMETRY OF COMPACT INFRARED SOURCES

Capps, Richard Warren, 1946- January 1976 (has links)
No description available.
3

REFRACTIVE INDEX MEASUREMENTS OF MAGNESIUM OXIDE, SAPPHIRE, AND AMTIR-1 AT CRYOGENIC TEMPERATURES

Nofziger, Michael James January 1985 (has links)
No description available.
4

An infrared and optical study of bright IRAS point sources of minimum apparent temperature

Paley, Elizabeth Sara, 1967- January 1989 (has links)
A sample of 170 sources from the IRAS Point Source Catalog (PSC) having / b / ≥ 40°, 100μm flux F₄ ≥ 2.5 Jy, and upper limit fluxes at 12, 25 and 60μm was studied on POSS and ESO photographic plates. 151 of these sources are identified as 'infrared cirrus,' thirteen as galaxies, and one as a planetary nebula; four sources lie in the Small Magellanic Cloud (SMC), and the remaining source is Saturn. Accurate infrared fluxes were obtained for 29 cirrus sources, the galaxies, and the planetary nebula. The colors of the cirrus sources support the hypothesis that the radiation is coming from a mixture of large, cool grains and Polycyclic Aromatic Hydrocarbons (PAHs), with large variation in relative abundances. Optical colors and surface brightness were obtained for one cirrus cloud using data from the CCD Transit Instrument on Kitt Peak.
5

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 – 4.8 µm spectral region

Rodolfo, Barron Jimenez 17 February 2005 (has links)
An all-solid-state continuous-wave (cw) laser system for mid-infrared absorption measurements of the carbon monoxide (CO) molecule has been developed and demonstrated. The single-mode, tunable output of an external-cavity diode laser (ECDL) is difference-frequency mixed (DFM) with the output of a 550-mW diode-pumped cw Nd:YAG laser in a periodically-poled lithium niobate (PPLN) crystal to produce tunable cw radiation in the mid-infrared. The wavelength of the 860-nm ECDL can be coarse tuned between 860.78 to 872.82 nm allowing the sensor to be operated in the 4.4 – 4.8 µm region. Results from single-pass mid-IR direct absorption experiments for CO concentration measurements are discussed. CO measurements were performed in CO/CO2/N2 mixtures in a room temperature gas cell that allowed the evaluation of the sensor operation and data reduction procedures. Field testing was performed at two locations: in the exhaust of a well-stirred reactor (WSR) at Wright-Patterson Air Force Base and the exhaust of a gas turbine at Honeywell Engines and Systems. Field tests demonstrated the feasibility of the sensor for operation in harsh combustion environments but much improvement in the sensor design and operation was required. Experiments in near-adiabatic hydrogen/air CO2-doped flames were performed featuring two-line thermometry in the 4.8 µm spectral region. The sensor concentration measurement uncertainty was estimated at 2% for gas cell testing. CO concentration measurements agreed within 15% of conventional extractive sampling at WSR, and for the flame experiments the repeatability of the peak absorption gives a system uncertainty of 10%. The noise equivalent CO detection limit for these experiments was estimated at 2 ppm per meter, for combustion gas at 1000 K assuming a SNR ratio of 1.
6

SIMULATION OF SPECTRAL RADIANCE OF A DYNAMIC INFRARED SOURCE

Strojnik, Marija January 1980 (has links)
An infrared source with spatially and temporally variable radiance is designed. It can be used to simulate any other infrared source simultaneously in two wavelength bands. The theoretical analysis of the real and simulator source is performed to define the design parameters. A series of the concepts are evaluated for their potential as infrared sources. A three-dimensional heat transfer computer program is used to predict the thermal behavior of the prototype glassy carbon waffle target. Tests are performed on this target which show that its thermal and radiation properties are in agreement with its predicted behavior. Glassy carbon waffle source is a good infrared radiator which can be used repeatedly at high temperatures. Measurements are described which show that the uniformity in the surface temperature can be maintained even when a scanning laser beam is used to deposit the energy on the target surface. The target surface is described analytically as a low pass filter. Its time constant is shown to depend on the target material and the temperature distribution in the target.
7

The power source of very luminous infrared galaxies.

Shier, Lisa Marie. January 1995 (has links)
Seven very luminous galaxies were examined to determine the contribution of active nuclei to their luminosity, the nature of their stellar population, and the validity of previous measurements of their H₂ content. Spectra of the 2.3 μm bands of CO were used to measure the stellar velocity dispersion, and hence the mass in the central regions. The bolometric luminosity, ionizing continuum luminosity, CO index, and 2.2 μm luminosity were also determined. Models of young stellar populations were compared to the observed properties of the galaxies. It was found that four of the seven galaxies have properties which are inconsistent with those of stellar populations. The active nuclei of these four galaxies produce more than half the total light of the galaxies, but less than one-third of the 2.2 μm light. The galaxies containing AGN also have young stellar populations. There is no evidence for the existence of active nuclei in the other three galaxies. The stellar populations that dominate the starlight in the galaxies have a wide range of properties. Stellar populations range in age from 10 to 65 Myr. The timescale for star formation ranges from 5 Myr to 100 Myr. The local initial mass function is ruled out for one of the four galaxies for which stellar population analysis could be done. The molecular gas masses for some very luminous galaxies determined from the ¹²CO J = 1 → 0 line are in error. The previously determined molecular gas masses are larger than the dynamical masses. The I(CO)/M(H₂) conversion factor found for Milky Way giant molecular clouds is evidently not correct for some very luminous infrared galaxies.
8

Resonantly enhanced thermal emitters based on nanophotonic structures

O'Regan, Bryan J. January 2015 (has links)
The manipulation of photons, especially the control of spontaneous emission, has become a core area of photonics research in the 21st century. One of the key challenges is the control of the broadband emission profile of thermal emitters. Recently, attention has focused on resonant nanophotonic structures to control the thermal emission with most of the work concentrating on the mid-infrared wavelength range and/or based on metallic nanostructures. However, the realisation of a high temperature, single wavelength, narrowband and efficient thermal source, remains a challenge. In this project, four individual nanophotonic resonant structures are presented for the control of thermal emission, all operating in the near-infrared (≈ 1.5 μm) wavelength range. The work is split over two different emission materials; gold and doped silicon. While I present two successful designs of narrowband thermal emitters from gold, the main backbone of the research is concentrated on doped silicon as the emission material. By combining the weak broadband absorption of doped silicon with a photonic crystal resonator, resonantly enhanced narrowband absorption is achieved. Using Kirchhoff's law of thermal radiation which equates the absorptivity and emissivity, narrowband absorption leads to narrowband emission, which is the underlying principle used throughout the work presented in this thesis to achieve narrowband thermal emission. One common oversight in many of the presented thermal emitter designs is the angular emission dependence, i.e. how the emission wavelength behaves away from surface normal. Typically, since the majority of the devices are based on periodic structures, the resonant emission wavelength changes with emission angle, which is not ideal. Here, the angular sensitivity is considered and addressed, by constructing a device that is based on localised confined resonances and not on propagating resonances, it is possible to achieve a truly monochromatic source i.e. one with the same emission wavelength in all directions, all the way up to an angle of 90°. Finally, the devices presented here demonstrate that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission away from the resonant wavelength.
9

Utilização da radiação ionizante na reciclagem de pneus inservíveis de automóvel e sua destinação ambiental adequada / Use of ionizing radiation in the recycling of unserviceable tires of automotive and its adequate environmental disposal

SOUZA, CLECIA de M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:28Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:09Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0818 seconds