Spelling suggestions: "subject:"infusion process"" "subject:"confusion process""
1 |
Hydro-mechanical coupling in a deformable dual-scale fibrous reinforcement : from mesoscale characterization and modeling to liquid resin infusion process simulation / Couplage hydro-mécanique dans un renfort fibreux à double échelle de porosité : des caractérisation et modélisation mésoscopiques à la simulation du procédé d’infusion de résine liquideHemmer, Julie 04 December 2018 (has links)
L'un des objectifs de l'industrie éolienne est de produire de grandes pièces de structure à moindre coût. Dans ce contexte, la fabrication de pièces composites à partir de renforts quasi unidirectionnels(quasi-UD NCF) avec le procédé d’infusion est compétitive tant sur le plan mécanique que financier. Le procédé d'infusion engendre un phénomène de décompaction dû à la flexibilité de la bâche à vide. De plus les NCF présentent un écoulement à double échelle pendant leur imprégnation. La modélisation des deux phénomènes est souvent réalisée en supposant que la préforme fibreuse est un milieu continu à perméabilité variable. Néanmoins, la perméabilité est influencée par la répartition et la taille des mésopores, qui dépendent de l'état de compaction. Le but de cette thèse est de caractériser expérimentalement l'évolution d'un quasi-UD lors de l’infusion et d’évaluer l'impact de la réorganisation microstructurale sur des quantités macroscopiques d’intérêt, tels que la perméabilité et le temps de remplissage des pièces.Des infusions ont été réalisées à l'intérieur d'un tomographe pour capter l’évolution d’une même microstructure avant et après infusion. Un modèle simplifié a été proposé pour prédire la perméabilité dans le plan et ainsi évaluer l'influence de la réorganisation microstructurelle sur celle-ci. De plus,un outil numérique a été développé pour prendre en compte un écoulement double échelle dans un milieu fibreux déformable bidisperse. L'impact de la décompaction sur le temps de remplissage des pièces a été établi. Une étude mécanique expérimentale du comportement de la mèche tout au long de l’infusion a également été réalisée afin de mieux comprendre le comportement du quasi-UD. Un modèle hyperélastique a finalement été proposé pour prédire le comportement mécanique 3D des mèches pendant la phase de chargement à sec, avant l'infusion. / A current aim of wind turbine industries is to produce large structural parts at reduced costs. In this context, manufacture composite blades made of quasi-unidirectional non-crimp fabrics (quasi-UD NCF) using the infusion process is competitive on both mechanical and cost aspects. The infusion process involves an unloading phenomenon due to the vacuum bag flexibility. Additionally, during the impregnation, NCFs exhibit a dual-scale flow. Usual modeling of both phenomena assumes that the fibrous preform is a continuous medium with a varying permeability. Nonetheless, the permeability is affected by the meso-pores size and spatial distribution, which depend on the compaction state. The goal of this thesis is thus to characterize experimentally the flow-induced microstructural evolution of a quasi-UD NCF during the infusion process, and to quantify the impact of thismicrostructural reorganization on relevant macroscopic parameters, such as modelled in-plane permeability as well as computed filling time of parts. In situ infusion process has been conducted inside X-ray Computed Tomography device to capture a dual-scale fibrous microstructure prior and after the infusion process. Additionally, a simplified model has been proposed to predict the in-plane permeability and thus to evaluate the influence of the microstructural reorganization on it. Then, a numerical tool has been developed to account for dual-scale flow in a bidisperse deformable fibrous media. The impact of the dual-scale unloading on themacroscopic filling time of parts has been established. A mechanical investigation of the towbehavior during the infusion process has been additionally carried out experimentally to better understand the quasi-UD NCF behavior. From these results, a hyperelastic model has been proposed to predict the 3D mechanical behavior of tows during the dry loading phase, prior to the infusion process.
|
2 |
Biocomposite with Continuous Spun Cellulose FibersPineda, Rocio Nahir January 2020 (has links)
The subject of this project is to study spun cellulose fibers made by Spinnova Oy inFinland. The fibers are spun using an environmentally friendly spinning process withoutuse of harsh chemicals.The spun filaments and the yarn based on these filaments were characterized and usedas reinforcement in polylactic acid biopolymer (PLA) and in biobased epoxy resin. Acomprehensive mechanical and morphological characterization of the single filamentsand their yarn was conducted. It was found that the single filaments are flat with a largewidth/thickness ratio, they are porous especially on one side and some cellulosemicrofibril orientation is observed on the filament surface. The single filaments are stiffand strong if compared to commercial regenerated cellulose filaments but are difficultto handle as they are very small and extremely light. The yarn showed to have lowermechanical properties but is easier to handle during the process of compositemanufacturing. Unidirectional fiber-reinforced composites were made using theSpinnova-yarn and PLA polymer applying film-stacking processing method. Thecomposite mechanical properties were studied and the results showed that themechanical performance of the PLA was significantly improved. The strength improvedfrom 54 MPa of the neat PLA to 95 MPa and the stiffness from 3.4 to 8.6 GPa withaddition of 22 wt% Spinnova-yarn.The main challenge of the project was handling the single filaments and their yarn todevelop a suitable manufacturing process which allows to exploit the potential of themto obtain a homogeneous fiber “preform” and to achieve good impregnation with the PLA matrix.
|
3 |
The Concept of "Infusion" in Curriculum Change: A Study in Knowledge UtilizationHirsh, Stephanie Abraham 05 1900 (has links)
In mandating new curriculum, state legislatures frequently have opted to require school districts to "infuse" new content rather than adopt a new course. The lack of procedural guidelines in these legislative mandates leaves curriculum specialists to struggle with an "infusion dilemma," the problem of implementing the new curriculum without knowing how it should appear, once implemented. The purpose of this study was to examine interpretations of infusion held by persons responsible for operationalizing an infusion mandate. The interpretations of "infusion" held by people concerned with the implementation of the 1977 Economic Education Act in Texas were investigated. Selected legislators, state agency personnel, curriculum consultants, economics educators, and classroom teachers were interviewed about the concept and process of infusion.
|
4 |
Modélisation du couplage hydromécanique lors de la mise en oeuvre des composites par infusion / Modelling of hydromechanical coupling during composite manufacturing by the infusion processLoudad, Raounak 19 January 2016 (has links)
L’objectif de ce travail est de contribuer à la modélisation du couplage hydromécanique, existant entre la déformation de la préforme fibreuse et l’écoulement de la résine, et par la suite à la simulation des procédés d’infusion. La méthode de résolution numérique déployée dans ce cadre est de type éléments finis avec volumes de contrôles (CVFEM) formulée en 2D½. Une nouvelle approche de modélisation de procédé d’infusion est proposée. Dans cette méthode, nous avons introduit des éléments 1D qui traduisent l’écoulement transverse. Cette approche permet de surmonter la difficulté numérique relative à l’usage des éléments finis volumiques pour un calcul 3D, notamment pour simuler la mise en œuvre des pièces industrielles de grandes dimensions. Le modèle fait appel à des lois de comportements caractérisées expérimentalement et qui permettent de tenir compte de l’évolution de la perméabilité et la compressibilité du milieu fibreux au cours de l’infusion. Diverses confrontations entre le modèle numérique proposé, des méthodes analytiques et expérimentales ont été menées. Une application du modèle dans la simulation de l’infusion d’un démonstrateur industriel de géométrie complexe est également réalisée. Les résultats obtenus sont très encourageants et révèlent l’efficacité de l’outil développé dans la simulation du procédé d’infusion / The aim of this work is to model the hydromechanical coupling that exists between the preform compressibility and the resin flow in order to simulate the infusion processes. The numerical method used in this study is based on the Control Volume Finite Elements Method (CVFEM) in 2D½. A new modelling approach of the infusion process is proposed. In this method, we introduced 1D elements to include through-the-thickness flow. This approach allows to reduce the computational time in comparison with full 3D modelling, especially in the simulation of industrial part infusion with large dimensions. The developed model is alimented by behavior laws that we characterized experimentally. These laws allow to take into account the evolution of the permeability and the compressibility of the fibrous medium during the infusion. We validated our model by comparing its results with analytical and experimental data. Additionally, an application of this simulation approach has been carried out to simulate the infusion of an industrial demonstrator with complex geometry. These comparisons show a good agreement between numerical and experimental results and reveal the efficiency of the developed tool in the infusion process simulation.
|
Page generated in 0.0885 seconds