• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational methods for event-based signals and applications / Méthodes de calcul pour les signaux événementiels et applications

Lagorce, Xavier 22 September 2015 (has links)
Les neurosciences computationnelles sont une grande source d'inspiration pour le traitement de données. De nos jours, aussi bon que soit l'état de l'art de la vision par ordinateur, il reste moins performant que les possibilités offertes par nos cerveaux ou ceux d'autres animaux ou insectes. Cette thèse se base sur cette observation afin de développer de nouvelles méthodes de calcul pour la vision par ordinateur ainsi que pour le calcul de manière générale reposant sur les données issues de capteurs événementiels tels que les "rétines artificielles". Ces capteurs copient la biologie et sont utilisés dans ces travaux pour le caractère épars de leurs données ainsi que pour leur précision temporelle : l'information est codée dans des événements qui sont générés avec une précision de l'ordre de la microseconde. Ce concept ouvre les portes d'un paradigme complètement nouveau pour la vision par ordinateur, reposant sur le temps plutôt que sur des images. Ces capteurs ont été utilisés pour développer des applications comme le suivi ou la reconnaissance d'objets ou encore de l'extraction de motifs élémentaires. Des plate-formes de calcul neuromorphiques ont aussi été utilisées pour implémenter plus efficacement ces algorithmes, nous conduisant à repenser l'idée même du calcul. Les travaux présentés dans cette thèse proposent une nouvelle façon de penser la vision par ordinateur via des capteurs événementiels ainsi qu'un nouveau paradigme pour le calcul. Le temps remplace la mémoire permettant ainsi des opérations complètement locales, ce qui permet de réaliser des machines hautement parallèles avec une architecture non-Von Neumann. / Computational Neurosciences are a great source of inspiration for data processing and computation. Nowadays, how great the state of the art of computer vision might be, it is still way less performant that what our brains or the ones from other animals or insects are capable of. This thesis takes on this observation to develop new computational methods for computer vision and generic computation relying on data produced by event-based sensors such as the so called “silicon retinas”. These sensors mimic biology and are used in this work because of the sparseness of their data and their precise timing: information is coded into events which are generated with a microsecond precision. This opens doors to a whole new paradigm for machine vision, relying on time instead of using images. We use these sensors to develop applications such as object tracking or recognition and feature extraction. We also used computational neuromorphic platforms to better implement these algorithms which led us to rethink the idea of computation itself. This work proposes new ways of thinking computer vision via event-based sensors and a new paradigm for computation. Time is replacing memory to allow for completely local operations, enabling highly parallel machines in a non-Von Neumann architecture.
2

Modèles cellulaires de champs neuronaux dynamiques / Cellular model of dynamic neural fields

Chappet de Vangel, Benoît 14 November 2016 (has links)
Dans la recherche permanente de solutions pour dépasser les limitations de plus en plus visibles de nos architectures matérielles, le calcul non-conventionnel offre des alternatives variées comme l’ingénierie neuromorphique et le calcul cellulaire. Comme von Neumann qui s’était initialement inspiré du cerveau pour concevoir l’architecture des ordinateurs, l’ingénierie neuromorphique prend la même inspiration en utilisant un substrat analogique plus proche des neurones et des synapses. Le calcul cellulaire s’inspire lui des substrats de calcul naturels (chimique, physiques ou biologiques) qui imposent une certaine localité des calculs de laquelle va émerger une organisation et des calculs. La recherche sur les mécanismes neuronaux permet de comprendre les grands principes de calculs émergents des neurones. Un des grands principes que nous allons utiliser dans cette thèse est la dynamique d’attracteurs d’abord décrite par Amari (champs neuronaux dynamiques, ou DNF pour dynamic neural fields), Amit et Zhang (réseaux de neurones à attracteurs continus). Ces champs de neurones ont des propriétés de calcul variées mais sont particulièrement adaptés aux représentations spatiales et aux fonctions des étages précoces du cortex visuel. Ils ont été utilisés entre autres dans des applications de robotique autonome, dans des tâches de classification et clusterisation. Comme de nombreux modèles de calcul neuronal, ils sont également intéressants du point de vue des architectures matérielles en raison de leur robustesse au bruit et aux fautes. On voit donc l’intérêt que ces modèles de calcul peuvent avoir comme solution permettant de dépasser (ou poursuivre) la loi de Moore. La réduction de la taille des transistors provoque en effet beaucoup de bruit, de même que la relaxation de la contrainte de ~ 0% de fautes lors de la production ou du fonctionnement des circuits permettrait d’énormes économies. Par ailleurs, l’évolution actuelle vers des circuits many-core de plus en plus distribués implique des difficultés liées au mode de calcul encore centralisés de la plupart des modèles algorithmiques parallèles, ainsi qu’au goulot d’étranglement des communications. L’approche cellulaire est une réponse naturelle à ces enjeux. Partant de ces différents constats, l’objectif de cette thèse est de rendre possible les calculs et applications riches des champs neuronaux dynamiques sur des substrats matériels grâce à des modèles neuro-cellulaires assurant une véritable localité, décentralisation et mise à l’échelle des calculs. Cette thèse est donc une proposition argumentée pour dépasser les limites des architectures de type von Neumann en utilisant des principes de calcul neuronal et cellulaire. Nous restons cependant dans le cadre numérique en explorant les performances des architectures proposées sur FPGA. L’utilisation de circuits analogiques (VLSI) serait tous aussi intéressante mais n’est pas étudiée ici. Les principales contributions sont les suivantes : 1) Calcul DNF dans un environnement neuromorphique ; 2) Calcul DNF avec communication purement locale : modèle RSDNF (randomly spiking DNF) ; 3) Calcul DNF avec communication purement locale et asynchrone : modèle CASAS-DNF (cellular array of stochastic asynchronous spiking DNF). / In the constant search for design going beyond the limits of the von Neumann architecture, non conventional computing offers various solutions like neuromorphic engineering and cellular computing. Like von Neumann who roughly reproduced brain structures to design computers architecture, neuromorphic engineering takes its inspiration directly from neurons and synapses using analog substratum. Cellular computing influence comes from natural substratum (chemistry, physic or biology) imposing locality of interactions from which organisation and computation emerge. Research on neural mechanisms was able to demonstrate several emergent properties of the neurons and synapses. One of them is the attractor dynamics described in different frameworks by Amari with the dynamic neural fields (DNF) and Amit and Zhang with the continuous attractor neural networks. These neural fields have various computing properties and are particularly relevant for spatial representations and early stages of visual cortex processing. They were used, for instance, in autonomous robotics, classification and clusterization. Similarly to many neuronal computing models, they are robust to noise and faults and thus are good candidates for noisy hardware computation models which would enable to keep up or surpass the Moore law. Indeed, transistor area reductions is leading to more and more noise and the relaxation of the approx. 0% fault during production and operation of integrated circuits would lead to tremendous savings. Furthermore, progress towards many-cores circuits with more and more cores leads to difficulties due to the centralised computation mode of usual parallel algorithms and their communication bottleneck. Cellular computing is the natural answer to these problems. Based on these different arguments, the goal of this thesis is to enable rich computations and applications of dynamic neural fields on hardware substratum with neuro-cellular models enabling a true locality, decentralization and scalability of the computations. This work is an attempt to go beyond von Neumann architectures by using cellular and neuronal computing principles. However, we will stay in the digital framework by exploring performances of proposed architectures on FPGA. Analog hardware like VLSI would also be very interesting but is not studied here. The main contributions of this work are : 1) Neuromorphic DNF computation ; 2) Local DNF computations with randomly spiking dynamic neural fields (RSDNF model) ; 3) Local and asynchronous DNF computations with cellular arrays of stochastic asynchronous spiking DNFs (CASAS-DNF model).
3

Méthologie de développement d'une bibliothèque d'IP-AMS en vue de la conception automatisée de systèmes sur puces analogiques et mixtes: application à l'ingénierie neuromorphique

Levi, Timothée 01 December 2007 (has links) (PDF)
Les travaux de cette thèse apportent une contribution à l'automatisation du flot de conception analogique et mixte, en termes de méthodologies de réutilisation. Des méthodologies de développement et d'exploration de bibliothèques d'IPs (Intellectual Property) analogiques sont développées : définition et caractérisation d'un IP analogique, création et exploration d'une base de données d'IPs, aide à la réutilisation destinée au concepteur. Le circuit utilisé pour l'application de ces méthodologies est un système neuromimétique c'est-à-dire qu'il reproduit l'activité électrique de neurones biologiques. Ces applications montrent à travers trois exemples, l'efficacité et la souplesse de notre méthodologie. Ces travaux proposent également une méthodologie de redimensionnement de circuits analogiques CMOS lors d'une migration technologique.

Page generated in 0.0907 seconds