• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ingénierie quantique de nanostructures à base de semi-conducteurs III-nitrures pour l'optoélectronique infrarouge / Quantum engineering of III-nitride nanostructures for infrared optoelectronics

Beeler, Mark 09 June 2015 (has links)
Ces dix dernières années ont vu l'essor des nanostructures GaN/Al(Ga)N en raison de leur potentiel pour le développement de technologies intersousbandes (ISB) en optoélectronique, et ce dans le spectre infrarouge complet. Ces technologies sont basées sur des transitions électroniques entre des états confinés de la bande de conduction de nanostructures, telles que les puits quantiques, les boîtes quantiques et les nanofils. Les composés III-nitrures sont prometteurs en particulier pour les domaines de la télécommunication ultra-rapide et de l'optoélectronique infrarouge rapide dans la bande 3-5 µm pour deux raisons : un large offset de bande et des temps de vie ISB inférieurs à la picoseconde. De plus, la grande énergie du phonon longitudinal optique du GaN permet d'envisager la réalisation de lasers à cascade quantique THz fonctionnant à température ambiante et de systèmes optoélectroniques ISB fonctionnant dans la bande 5-10 THz, interdite pour le GaAs. Récemment, plusieurs technologies optoélectroniques ISB basées sur le GaN ont été développées, comprenant des photodétecteurs, des switchs, et des modulateurs électro-optiques. Cependant, plusieurs défis restent à relever, en particulier concernant l'extension vers les grandes longueurs d'ondes et l'amélioration des performances des appareils pompés électriquement. Une des difficultés principales opposées à l'extension des technologies GaN ISB vers le lointain infrarouge résulte de la présence d'un champ électrique interne, qui ajoute un confinement supplémentaire, augmentant ainsi la distance énergétique entre les niveaux électroniques dans les puits quantiques. Pour pallier à ce problème, on propose une structure de puits quantique alternative, dont les multiples couches créent un potentiel pseudo-carré. On discute la robustesse de ce design quant aux variations causées par les incertitudes de croissance, et la possibilité de l'intégrer dans des structures nécessitant un transport électronique par effet tunnel résonnant. On décrit également les structures fabriquées par épitaxie par jets moléculaires et présentant de l'absorption de lumière polarisée TM dans la gamme THz. Enfin on propose un design de laser à cascade quantique basé sur ces puits quantiques pseudo-carrés. L'utilisation d'orientations non-polaires est une autre façon possible d'obtenir des potentiels carrés. Dans ce manuscrit, on compare des structures de multi puits quantiques GaN/Al(Ga)N dont les croissances ont été réalisées sur des substrats massifs de GaN orientés a et m. On montre que les meilleurs résultats en termes de propriétés structurales et optiques (interbandes et ISB) sont obtenues pour les structures plan m. On démontre des absorptions ISB à température ambiante dans la fenêtre 1.5-5.8 µm, dont la limite haute est imposée par la seconde harmonique de la bande de Reststrahlen du GaN. Le contrôle de la relaxation des porteurs dans les technologies ISB prend d'autant plus d'importance pour l'ingénierie de ces structures qu'on en augmente les efficacités. L'existence de temps de vie ISB plus longs dans les systèmes confinés latéralement a été démontrée, motivant ainsi les recherches pour intégrer les nanofils en tant qu'élément actif dans les technologies ISB. De plus, le grand rapport de la surface au volume pour les nanofils permet la relaxation élastique des tensions dues aux différences de paramètres de mailles. Cette relaxation augmente la taille de la région active efficace et améliore sa composition, dépassant les limites des systèmes planaires ou des boîtes quantiques. Dans ce manuscrit, on décrit l'observation expérimentale d'absorption de lumière infrarouge polarisée TM attribuée à la transition intrabande s-pz dans des nanodisques GaN/AlN dopés avec du Ge et insérés dans des nanofils de GaN. On compare les résultats obtenus avec les calculs théoriques, qui prennent en compte la distribution en trois dimensions de la tension, les charges de surface et les effets des corps multiples. / GaN/Al(Ga)N nanostructures have emerged during the last decade as promising materials for new intersubband (ISB) optoelectronics devices, with the potential to cover the whole infrared (IR) spectrum. These technologies rely on electron transitions between quantum-confined states in the conduction band of nanostructures –quantum wells (QWs), quantum dots (QDs), nanowires (NWs). The large conduction band offset between III-N compounds, and their sub-ps ISB recovery times make them appealing for ultrafast telecommunication devices and for fast IR optoelectronics in the 3-5 µm band. Furthermore, the large energy of GaN LO phonon (92 meV) opens prospects for room-temperature THz quantum cascade lasers and ISB devices covering the 5-10 THz band, inaccessible to GaAs. A variety of GaN-based ISB optoelectronic devices have recently been demonstrated, including photodetectors, switches and electro-optical modulators. However, a number of issues remain open, particularly concerning the extension towards longer wavelengths and the improvement of electrically pumped devices performance. One of the main challenges to extend the GaN-ISB technology towards the far-IR comes from the polarization-induced internal electric field, which imposes an additional confinement that increases the energetic distance between the electronic levels in the QWs. In order to surmount this constraint, I propose alternative multi-layer QW designs that create a pseudo-square potential profile. The robustness of the designs in terms of variations due to growth uncertainties, and the feasibility of their integration in devices architectures requiring resonant tunneling transport are discussed. Experimental realizations by molecular-beam epitaxy displaying TM-polarized THz absorption are presented. A quantum cascade laser design incorporating pseudo-square QWs is introduced. An alternative approach to obtain square potential profiles is the use of nonpolar orientations. In this thesis, I compare GaN/Al(Ga)N multi-quantum wells grown on a and m nonpolar bulk GaN showing that the best results in terms of structural and optical (interband and ISB) performance are obtained for m-plane structures. Room-temperature ISB absorption in the range of 1.5–5.8 µm is demonstrated, the longer wavelength limit being established by the second order of the Reststrahlen band in GaN. As ISB devices are pushed towards higher efficiencies, the control of carrier relaxation becomes a key aspect for device engineering. Longer intraband lifetimes have been proven to exist in laterally confined systems, which motivates studies to incorporate NWs as active elements in ISB devices. Furthermore, the large NW surface-to-volume ratio allows misfit strain to be elastically released, extending the viable active region size and composition beyond the limits of planar systems or QDs. In this thesis, I report the experimental observation of TM-polarized IR absorption assigned to the s-pz intraband transition in Ge-doped GaN/AlN nanodisks inserted in self-assembled GaN NWs. Results are compared with theoretical calculations accounting for the 3D strain distribution, surface charges and many-body effects.STAR
2

Adjonction cohérente itérative de photons pour la génération d'états quantiques mésoscopiques du champ électromagnétique / Iterative coherent photon adjunction for the generation of mesoscopic quantum states of the electromagnetic field

Etesse, Jean 12 December 2014 (has links)
Cette thèse porte sur la génération d'états quantiques mésoscopiques arbitraires de la lumière par l'utilisation itérée d'un protocole élémentaire simple, basé sur un procédé d'adjonction cohérente de photons. Ce protocole tire parti des deux descriptions ondulatoires et corpusculaires complémentaires de la lumière, en impliquant des états davantage propices à une description discrète (les photons, corpuscules élémentaires de la lumière) avec des mesures continues sur le champ électromagnétique (les mesures de quadratures). Nous démontrons la validité du protocole expérimentalement en montrant que celui-ci permet la génération d'états chats de Schrödinger optiques (superposition cohérente d'états quasi-classiques) comprimés en quadrature. Ces états présentent un grand intérêt étant donné qu'ils peuvent constituer la brique élémentaire du calcul quantique à états cohérents, le "qubit" (ou bit quantique). Nous étudions également la mise en oeuvre théorique du protocole dans la production d'états plus complexes : les états "Peignes en quadrature" dont la fonction d'onde sur la quadrature x est constituée d'une succession de fins pics gaussiens modulés par une large enveloppe gaussienne. Outre l'intérêt que ceux-ci présentent dans la mise en oeuvre de codes correcteurs d'erreurs quantiques, nous montrons qu'ils permettent de réaliser des violations des inégalités de Bell par mesures homodynes seulement, ouvrant la voie à des tests sans échappatoires / In this thesis, we propose a new scheme for the generation of mesoscopic optical quantum states of light, by the iterated use of an elementary protocol, based on a coherent adjunction of photons. This protocol takes advantage of the two complementary wave and particle descriptions of light, by involving intrinsically discrete states (photons, elementary particles of light) and continuous measurements on the electromagnetic field (quadrature measurements). We experimentally prove the validity of the protocol by showing that it enables the generation of squeezed optical Schrödinger cat states (coherent superposition of quasi-classical states). These states are of great interest as they can be used as the elementary piece in the coherent state quantum calculation, the "qubit" (or quantum bit). We also study the theoretical implementation of the protocol for the production of more complex states : the "quadrature Comb states", whose wavefunction along the quadrature x consists in a succession of thin gaussian peaks modulated by a larger gaussian envelope. Amongst other applications like quantum error correcting codes, we show that they allow for a violation of Bell's inequalities with homodyne measurements only, opening the path towards loophole-free violations

Page generated in 0.084 seconds