Spelling suggestions: "subject:"ingeniería basado een modelos"" "subject:"ingeniería basado enn modelos""
1 |
Design of a Machine Learning-based Approach for Fragment Retrieval on ModelsMarcén Terraza, Ana Cristina 10 January 2021 (has links)
[ES] El aprendizaje automático (ML por sus siglas en inglés) es conocido como la rama de la inteligencia artificial que reúne algoritmos estadísticos, probabilísticos y de optimización, que aprenden empíricamente. ML puede aprovechar el conocimiento y la experiencia que se han generado durante años en las empresas para realizar automáticamente diferentes procesos. Por lo tanto, ML se ha aplicado a diversas áreas de investigación, que estudian desde la medicina hasta la ingeniería del software.
De hecho, en el campo de la ingeniería del software, el mantenimiento y la evolución de un sistema abarca hasta un 80% de la vida útil del sistema. Las empresas, que se han dedicado al desarrollo de sistemas software durante muchos años, han acumulado grandes cantidades de conocimiento y experiencia. Por lo tanto, ML resulta una solución atractiva para reducir sus costos de mantenimiento aprovechando los recursos acumulados. Específicamente, la Recuperación de Enlaces de Trazabilidad, la Localización de Errores y la Ubicación de Características se encuentran entre las tareas más comunes y relevantes para realizar el mantenimiento de productos software. Para abordar estas tareas, los investigadores han propuesto diferentes enfoques. Sin embargo, la mayoría de las investigaciones se centran en métodos tradicionales, como la indexación semántica latente, que no explota los recursos recopilados. Además, la mayoría de las investigaciones se enfocan en el código, descuidando otros artefactos de software como son los modelos.
En esta tesis, presentamos un enfoque basado en ML para la recuperación de fragmentos en modelos (FRAME). El objetivo de este enfoque es recuperar el fragmento del modelo que realiza mejor una consulta específica. Esto permite a los ingenieros recuperar el fragmento que necesita ser trazado, reparado o ubicado para el mantenimiento del software. Específicamente, FRAME combina la computación evolutiva y las técnicas ML.
En FRAME, un algoritmo evolutivo es guiado por ML para extraer de manera eficaz distintos fragmentos de un modelo. Estos fragmentos son posteriormente evaluados mediante técnicas ML. Para aprender a evaluarlos, las técnicas ML aprovechan el conocimiento (fragmentos recuperados de modelos) y la experiencia que las empresas han generado durante años. Basándose en lo aprendido, las técnicas ML determinan qué fragmento del modelo realiza mejor una consulta. Sin embargo, la mayoría de las técnicas ML no pueden entender los fragmentos de los modelos. Por lo tanto, antes de aplicar las técnicas ML, el enfoque propuesto codifica los fragmentos a través de una codificación ontológica y evolutiva. En resumen, FRAME está diseñado para extraer fragmentos de un modelo, codificarlos y evaluar cuál realiza mejor una consulta específica.
El enfoque ha sido evaluado a partir de un caso real proporcionado por nuestro socio industrial (CAF, un proveedor internacional de soluciones ferroviarias). Además, sus resultados han sido comparados con los resultados de los enfoques más comunes y recientes. Los resultados muestran que FRAME obtuvo los mejores resultados para la mayoría de los indicadores de rendimiento, proporcionando un valor medio de precisión igual a 59.91%, un valor medio de exhaustividad igual a 78.95%, una valor-F medio igual a 62.50% y un MCC (Coeficiente de Correlación Matthews) medio igual a 0.64. Aprovechando los fragmentos recuperados de los modelos, FRAME es menos sensible al conocimiento tácito y al desajuste de vocabulario que los enfoques basados en información semántica. Sin embargo, FRAME está limitado por la disponibilidad de fragmentos recuperados para llevar a cabo el aprendizaje automático. Esta tesis presenta una discusión más amplia de estos aspectos así como el análisis estadístico de los resultados, que evalúa la magnitud de la mejora en comparación con los otros enfoques. / [CAT] L'aprenentatge automàtic (ML per les seues sigles en anglés) és conegut com la branca de la intel·ligència artificial que reuneix algorismes estadístics, probabilístics i d'optimització, que aprenen empíricament. ML pot aprofitar el coneixement i l'experiència que s'han generat durant anys en les empreses per a realitzar automàticament diferents processos. Per tant, ML s'ha aplicat a diverses àrees d'investigació, que estudien des de la medicina fins a l'enginyeria del programari.
De fet, en el camp de l'enginyeria del programari, el manteniment i l'evolució d'un sistema abasta fins a un 80% de la vida útil del sistema. Les empreses, que s'han dedicat al desenvolupament de sistemes programari durant molts anys, han acumulat grans quantitats de coneixement i experiència. Per tant, ML resulta una solució atractiva per a reduir els seus costos de manteniment aprofitant els recursos acumulats. Específicament, la Recuperació d'Enllaços de Traçabilitat, la Localització d'Errors i la Ubicació de Característiques es troben entre les tasques més comunes i rellevants per a realitzar el manteniment de productes programari. Per a abordar aquestes tasques, els investigadors han proposat diferents enfocaments. No obstant això, la majoria de les investigacions se centren en mètodes tradicionals, com la indexació semàntica latent, que no explota els recursos recopilats. A més, la majoria de les investigacions s'enfoquen en el codi, descurant altres artefactes de programari com són els models.
En aquesta tesi, presentem un enfocament basat en ML per a la recuperació de fragments en models (FRAME). L'objectiu d'aquest enfocament és recuperar el fragment del model que realitza millor una consulta específica. Això permet als enginyers recuperar el fragment que necessita ser traçat, reparat o situat per al manteniment del programari. Específicament, FRAME combina la computació evolutiva i les tècniques ML.
En FRAME, un algorisme evolutiu és guiat per ML per a extraure de manera eficaç diferents fragments d'un model. Aquests fragments són posteriorment avaluats mitjançant tècniques ML. Per a aprendre a avaluar-los, les tècniques ML aprofiten el coneixement (fragments recuperats de models) i l'experiència que les empreses han generat durant anys. Basant-se en l'aprés, les tècniques ML determinen quin fragment del model realitza millor una consulta. No obstant això, la majoria de les tècniques ML no poden entendre els fragments dels models. Per tant, abans d'aplicar les tècniques ML, l'enfocament proposat codifica els fragments a través d'una codificació ontològica i evolutiva. En resum, FRAME està dissenyat per a extraure fragments d'un model, codificar-los i avaluar quin realitza millor una consulta específica.
L'enfocament ha sigut avaluat a partir d'un cas real proporcionat pel nostre soci industrial (CAF, un proveïdor internacional de solucions ferroviàries). A més, els seus resultats han sigut comparats amb els resultats dels enfocaments més comuns i recents. Els resultats mostren que FRAME va obtindre els millors resultats per a la majoria dels indicadors de rendiment, proporcionant un valor mitjà de precisió igual a 59.91%, un valor mitjà d'exhaustivitat igual a 78.95%, una valor-F mig igual a 62.50% i un MCC (Coeficient de Correlació Matthews) mig igual a 0.64. Aprofitant els fragments recuperats dels models, FRAME és menys sensible al coneixement tàcit i al desajustament de vocabulari que els enfocaments basats en informació semàntica. No obstant això, FRAME està limitat per la disponibilitat de fragments recuperats per a dur a terme l'aprenentatge automàtic. Aquesta tesi presenta una discussió més àmplia d'aquests aspectes així com l'anàlisi estadística dels resultats, que avalua la magnitud de la millora en comparació amb els altres enfocaments. / [EN] Machine Learning (ML) is known as the branch of artificial intelligence that gathers statistical, probabilistic, and optimization algorithms, which learn empirically. ML can exploit the knowledge and the experience that have been generated for years to automatically perform different processes. Therefore, ML has been applied to a wide range of research areas, from medicine to software engineering.
In fact, in software engineering field, up to an 80% of a system's lifetime is spent on the maintenance and evolution of the system. The companies, that have been developing these software systems for a long time, have gathered a huge amount of knowledge and experience. Therefore, ML is an attractive solution to reduce their maintenance costs exploiting the gathered resources. Specifically, Traceability Link Recovery, Bug Localization, and Feature Location are amongst the most common and relevant tasks when maintaining software products. To tackle these tasks, researchers have proposed a number of approaches. However, most research focus on traditional methods, such as Latent Semantic Indexing, which does not exploit the gathered resources. Moreover, most research targets code, neglecting other software artifacts such as models.
In this dissertation, we present an ML-based approach for fragment retrieval on models (FRAME). The goal of this approach is to retrieve the model fragment which better realizes a specific query in a model. This allows engineers to retrieve the model fragment, which must be traced, fixed, or located for software maintenance. Specifically, the FRAME approach combines evolutionary computation and ML techniques.
In the FRAME approach, an evolutionary algorithm is guided by ML to effectively extract model fragments from a model. These model fragments are then assessed through ML techniques. To learn how to assess them, ML techniques takes advantage of the companies' knowledge (retrieved model fragments) and experience. Then, based on what was learned, ML techniques determine which model fragment better realizes a query. However, model fragments are not understandable for most ML techniques. Therefore, the proposed approach encodes the model fragments through an ontological evolutionary encoding. In short, the FRAME approach is designed to extract model fragments, encode them, and assess which one better realizes a specific query.
The approach has been evaluated in our industrial partner (CAF, an international provider of railway solutions) and compared to the most common and recent approaches. The results show that the FRAME approach achieved the best results for most performance indicators, providing a mean precision value of 59.91%, a recall value of 78.95%, a combined F-measure of 62.50%, and a MCC (Matthews correlation coefficient) value of 0.64. Leveraging retrieved model fragments, the FRAME approach is less sensitive to tacit knowledge and vocabulary mismatch than the approaches based on semantic information. However, the approach is limited by the availability of the retrieved model fragments to perform the learning. These aspects are further discussed, after the statistical analysis of the results, which assesses the magnitude of the improvement in comparison to the other approaches. / Marcén Terraza, AC. (2020). Design of a Machine Learning-based Approach for Fragment Retrieval on Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158617
|
2 |
Definition of Descriptive and Diagnostic Measurements for Model Fragment RetrievalBallarin Naya, Manuel 02 September 2021 (has links)
Tesis por compendio / [ES] Hoy en día, el software existe en casi todo. Las empresas a menudo desarrollan y mantienen colecciones de sistemas de software personalizados que comparten algunas características entre ellos, pero que también tienen otras características particulares. Conforme el número de características y el número de variantes de un producto crece, el mantenimiento del software se vuelve cada vez más complejo. Para hacer frente a esta situación la Comunidad de Ingeniería del Software basada en Modelos está abordando una actividad clave: la Localización de Fragmentos de Modelo. Esta actividad consiste en la identificación de elementos del modelo que son relevantes para un requisito, una característica o un bug. Durante los últimos años se han propuesto muchos enfoques para abordar la identificación de los elementos del modelo que corresponden a una funcionalidad en particular. Sin embargo, existe una carencia a la hora de cómo se reportan las medidas del espacio de búsqueda, así como las medidas de la solución a encontrar. El objetivo de nuestra tesis radica en proporcionar a la comunidad dedicada a la actividad de localización de fragmentos de modelo una serie de medidas (tamaño, volumen, densidad, multiplicidad y dispersión) para reportar los problemas de localización de fragmentos de modelo. El uso de estas novedosas medidas ayuda a los investigadores durante la creación de nuevos enfoques, así como la mejora de aquellos enfoques ya existentes. Mediante el uso de dos casos de estudio reales e industriales, esta tesis pone en valor la importancia de estas medidas para comparar resultados de diferentes enfoques de una manera precisa. Los resultados de este trabajo han sido redactados y publicados en foros, conferencias y revistas especializadas en los temas y contexto de la investigación. Esta tesis se presenta como un compendio de artículos acorde a la regulación de la Universitat Politècnica de València. Este documento de tesis presenta los temas, el contexto y los objetivos de la investigación. Presenta las publicaciones académicas que se han publicado como resultado del trabajo y luego analiza los resultados de la investigación. / [CA] Hui en dia, el programari existix en quasi tot. Les empreses sovint desenrotllen i mantenen col·leccions de sistemes de programari personalitzats que compartixen algunes característiques entre ells, però que també tenen altres característiques particulars. Conforme el nombre de característiques i el nombre de variants d'un producte creix, el manteniment del programari es torna cada vegada més complex. Per a fer front a esta situació la Comunitat d'Enginyeria del Programari basada en Models està abordant una activitat clau: la Localització de Fragments de Model. Esta activitat consistix en la identificació d'elements del model que són rellevants per a un requisit, una característica o un bug. Durant els últims anys s'han proposat molts enfocaments per a abordar la identificació dels elements del model que corresponen a una funcionalitat en particular. No obstant això, hi ha una carència a l'hora de com es reporten les mesures de l'espai de busca, així com les mesures de la solució a trobar. L'objectiu de la nostra tesi radica a proporcionar a la comunitat dedicada a l'activitat de localització de fragments de model una sèrie de mesures (grandària, volum, densitat, multiplicitat i dispersió) per a reportar els problemes de localització de fragments de model. L'ús d'estes noves mesures ajuda als investigadors durant la creació de nous enfocaments, així com la millora d'aquells enfocaments ja existents. Per mitjà de l'ús de dos casos d'estudi reals i industrials, esta tesi posa en valor la importància d'estes mesures per a comparar resultats de diferents enfocaments d'una manera precisa. Els resultats d'este treball han sigut redactats i publicats en fòrums, conferències i revistes especialitzades en els temes i context de la investigació. Esta tesi es presenta com un compendi d'articles d'acord amb la regulació de la Universitat Politècnica de València. Este document de tesi presenta els temes, el context i els objectius de la investigació. Presenta les publicacions acadèmiques que s'han publicat com resultat del treball i després analitza els resultats de la investigació. / [EN] Nowadays, software exists in almost everything. Companies often develop and maintain a collection of custom-tailored software systems that share some common features but also support customer-specific ones. As the number of features and the number of product variants grows, software maintenance is becoming more and more complex. To keep pace with this situation, Model-Based Software Engineering Community is addressing a key-activity: Model Fragment Location (MFL). MFL aims at identifying model elements that are relevant to a requirement, feature, or bug. Many MFL approaches have been introduced in the last few years to address the identification of the model elements that correspond to a specific functionality. However, there is a lack of detail when the measurements about the search space (models) and the measurements about the solution to be found (model fragment) are reported. The goal of this thesis is to provide insights to MFL Research Community of how to improve the report of location problems. We propose using five measurements (size, volume, density, multiplicity, and dispersion) to report the location problems during MFL. The usage of these novel measurements support researchers during the creation of new MFL approaches and during the improvement of those existing ones. Using two different case studies, both real and industrial, we emphasize the importance of these measurements in order to compare results in a deeply way. The results of the research have been redacted and published in forums, conferences, and journals specialized in the topics and context of the research.
This thesis is presented as compendium of articles according the regulations in Universitat Politècnica de València. This thesis document introduces the topics, context, and objectives of the research, presents the academic publications that have been published as a result of the work, and then discusses the outcomes of the investigation. / Ballarin Naya, M. (2021). Definition of Descriptive and Diagnostic Measurements for Model Fragment Retrieval [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171604 / Compendio
|
Page generated in 0.1001 seconds