• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique

Shahzad, Muhammad Kashif 05 October 2012 (has links) (PDF)
La " conception pour la fabrication " ou DFM (Design for Manufacturing) est une méthode maintenant classique pour assurer lors de la conception des produits simultanément la faisabilité, la qualité et le rendement de la production. Dans l'industrie microélectronique, le Design Rule Manual (DRM) a bien fonctionné jusqu'à la technologie 250nm avec la prise en compte des variations systématiques dans les règles et/ou des modèles basés sur l'analyse des causes profondes, mais au-delà de cette technologie, des limites ont été atteintes en raison de l'incapacité à sasir les corrélations entre variations spatiales. D'autre part, l'évolution rapide des produits et des technologies contraint à une mise à jour " dynamique " des DRM en fonction des améliorations trouvées dans les fabs. Dans ce contexte les contributions de thèse sont (i) une définition interdisciplinaire des AMDEC et analyse de risques pour contribuer aux défis du DFM dynamique, (ii) un modèle MAM (mapping and alignment model) de localisation spatiale pour les données de tests, (iii) un référentiel de données basé sur une ontologie ROMMII (referential ontology Meta model for information integration) pour effectuer le mapping entre des données hétérogènes issues de sources variées et (iv) un modèle SPM (spatial positioning model) qui vise à intégrer les facteurs spatiaux dans les méthodes DFM de la microélectronique, pour effectuer une analyse précise et la modélisation des variations spatiales basées sur l'exploitation dynamique des données de fabrication avec des volumétries importantes.
2

Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique / Towards production data mining to improve DFM methods in Microelectronics industry

Shahzad, Muhammad Kashif 05 October 2012 (has links)
La « conception pour la fabrication » ou DFM (Design for Manufacturing) est une méthode maintenant classique pour assurer lors de la conception des produits simultanément la faisabilité, la qualité et le rendement de la production. Dans l'industrie microélectronique, le Design Rule Manual (DRM) a bien fonctionné jusqu'à la technologie 250nm avec la prise en compte des variations systématiques dans les règles et/ou des modèles basés sur l'analyse des causes profondes, mais au-delà de cette technologie, des limites ont été atteintes en raison de l'incapacité à sasir les corrélations entre variations spatiales. D'autre part, l'évolution rapide des produits et des technologies contraint à une mise à jour « dynamique » des DRM en fonction des améliorations trouvées dans les fabs. Dans ce contexte les contributions de thèse sont (i) une définition interdisciplinaire des AMDEC et analyse de risques pour contribuer aux défis du DFM dynamique, (ii) un modèle MAM (mapping and alignment model) de localisation spatiale pour les données de tests, (iii) un référentiel de données basé sur une ontologie ROMMII (referential ontology Meta model for information integration) pour effectuer le mapping entre des données hétérogènes issues de sources variées et (iv) un modèle SPM (spatial positioning model) qui vise à intégrer les facteurs spatiaux dans les méthodes DFM de la microélectronique, pour effectuer une analyse précise et la modélisation des variations spatiales basées sur l'exploitation dynamique des données de fabrication avec des volumétries importantes. / The DFM (design for manufacturing) methods are used during technology alignment and adoption processes in the semiconductor industry (SI) for manufacturability and yield assessments. These methods have worked well till 250nm technology for the transformation of systematic variations into rules and/or models based on the single-source data analyses, but beyond this technology they have turned into ineffective R&D efforts. The reason for this is our inability to capture newly emerging spatial variations. It has led an exponential increase in technology lead times and costs that must be addressed; hence, objectively in this thesis we are focused on identifying and removing causes associated with the DFM ineffectiveness. The fabless, foundry and traditional integrated device manufacturer (IDM) business models are first analyzed to see coherence against a recent shift in business objectives from time-to-market (T2M) and time-to-volume towards (T2V) towards ramp-up rate. The increasing technology lead times and costs are identified as a big challenge in achieving quick ramp-up rates; hence, an extended IDM (e-IDM) business model is proposed to support quick ramp-up rates which is based on improving the DFM ineffectiveness followed by its smooth integration. We have found (i) single-source analyses and (ii) inability to exploit huge manufacturing data volumes as core limiting factors (failure modes) towards DFM ineffectiveness during technology alignment and adoption efforts within an IDM. The causes for single-source root cause analysis are identified as the (i) varying metrology reference frames and (ii) test structures orientations that require wafer rotation prior to the measurements, resulting in varying metrology coordinates (die/site level mismatches). A generic coordinates mapping and alignment model (MAM) is proposed to remove these die/site level mismatches, however to accurately capture the emerging spatial variations, we have proposed a spatial positioning model (SPM) to perform multi-source parametric correlation based on the shortest distance between respective test structures used to measure the parameters. The (i) unstructured model evolution, (ii) ontology issues and (iii) missing links among production databases are found as causes towards our inability to exploit huge manufacturing data volumes. The ROMMII (referential ontology Meta model for information integration) framework is then proposed to remove these issues and enable the dynamic and efficient multi-source root cause analyses. An interdisciplinary failure mode effect analysis (i-FMEA) methodology is also proposed to find cyclic failure modes and causes across the business functions which require generic solutions rather than operational fixes for improvement. The proposed e-IDM, MAM, SPM, and ROMMII framework results in accurate analysis and modeling of emerging spatial variations based on dynamic exploitation of the huge manufacturing data volumes.

Page generated in 0.0563 seconds