• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the origins of enzyme inhibitor selectivity and promiscuity : a case study of protein kinase binding to staurosporine

Tanramluk, Duangrudee January 2010 (has links)
Protein kinases are important regulatory enzymes in signal transduction and in cell regulation. Understanding inhibition mechanisms of kinases is important for the further development of new therapies for cancer and inflammatory diseases. I have developed a statistical approach based on the Mantel test to find the relationship between the shapes of ATP binding sites and their affinities for inhibitors. My shape-based dendrogram shows clustering of the kinases based on similarity in shape. I investigate the pocket in terms of conservation of surrounding amino acids and atoms in order to identify the key determinants of ligand binding. I find that the most conserved regions are the main chain atoms in the hinge region and I show that the tetrahydropyran ring of staurosporine causes induced-fit of the glycine rich loop. I apply multiple linear regression to select distances measured between the distinctive parts of residues which correlate with the binding constants. This method allows me to understand the importance of the size of the gatekeeper residue and the closure between the first glycine of the GXGXXG motif and the aspartate of the DFG loop, which act together to promote tight binding to staurosporine. I also find that the greater the number of hydrogen bonds made by the kinase around the methylamine group of staurosporine, the tighter the binding to staurosporine. The website I have developed allows a better understanding of cross reactivity and may be useful for narrowing down the options for a synthetic strategy to design kinase inhibitors.
2

Inhibitory intramembránových proteas z rodiny rhomboidů jako nástroj buněčné biologie / Inhibitors of rhomboid proteases as tools for cell biology

Kuzmík, Ján January 2019 (has links)
Rhomboid intramembrane serine proteases cleave polypeptide chains within lipid bilayer. Rhomboid proteases were originally discovered in Drosophila melanogaster where they regulate ontogenesis of the fly, but they are present in all domains of life. Nowadays, various diseases, such as malaria, amoebiasis, Parkinson's disease, various tumour malignancies, and diabetes, have been linked with rhomboid proteases. However, natural substrates and function of most rhomboids remain elusive. Cell biology tools are needed for unravelling functions of rhomboids, as well as for potential pharmacological applications, and this together fuels the effort to develop specific rhomboid inhibitors. The inhibitors known to date always bear an electrophilic warhead attacking the nucleophilic serine of the atypical serine-histidine catalytic dyad of rhomboid. From the various developed inhibitors, peptidyl -ketoamides substituted at the ketoamide nitrogen by hydrophobic groups, discovered in our laboratory, hold the biggest potential. They are potent, reversible, selective, tunable, and are built around a pharmacophore already approved for medical use. Here, I set out to improve peptidyl -ketoamides by exploring the chemical space in the active site of rhomboid and testing substituents of the ketoamide nitrogen of increasing...
3

INHIBITOR RESISTANCE MECHANISMS AND INHIBITOR DESIGN IN ¿¿-LACTAMASES

Rodkey, Elizabeth A. 08 March 2013 (has links)
No description available.
4

Structural and Biochemical Dissection of the Trehalose Biosynthetic Complex in Pathogenic Fungi

Miao, Yi January 2016 (has links)
<p>Trehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets. </p><p>In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention. </p><p>I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release. </p><p>Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways. </p><p>Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.</p> / Dissertation
5

Dynamic combinatorial mass spectrometry for 2-oxoglutarate oxygenase inhibition

Demetriades, Marina January 2013 (has links)
In the last decade, dynamic combinatorial mass spectrometry (DCMS) with protein targets has emerged as a promising method for the identification of enzyme-inhibitors. 2-Oxoglutarate (2OG) oxygenases are involved in important biological processes related to many diseases; several human 2OG oxygenases are targeted for pharmaceutical intervention. This thesis describes inhibition studies on three 2OG oxygenases using DCMS and structure activity relation (SAR) studies. Disulphide based DCMS was used for the identification of N-oxalyl based lead inhibitors for the 2OG oxygenase AlkB from Escherichia coli. Crystallographic analyses of AlkB with a lead inhibitor assisted in the design of a second generation of inhibitors using N-oxalyl, pyridyl and quinolinyl scaffolds. Crystallographic and kinetic data of three potent and selective AlkB inhibitors validates the DCMS approach for the development of 2OG oxygenase inhibitors. The hypoxia inducible factor hydroxylase, prolyl hydroxylase domain 2 (PHD2), was then used as the model enzyme for the development of a novel DCMS approach employing the reversible reaction of boronic acids with diols to form boronate esters. The ‘boronate’ DCMS method was used to identify pyridyl- substituted lead compounds. Further modification of the pyridine scaffold, based on structural analyses, led to the development of highly potent and selective PHD2 inhibitors. To identify inhibitors for the fat mass and obesity associated protein (FTO), another 2OG oxygenase, an inhibition assay was developed. The inhibition assay was used in conjunction with a differential scanning fluorimetry (DSF) binding assay to identify isoquinolinyl and pyridyl inhibitor scaffolds, related to those used in the DCMS studies. FTO complexed structures of these compounds, and with a natural product anthraquinone, enabled the design and synthesis of new inhibitors that are both co-substrate and substrate competitors of FTO. One such compound proved to be a potent FTO inhibitor with improved selectivity over other 2OG oxygenases. Overall, the work validates the use of DCMS methods for the development of potent and selective inhibitors for 2OG oxygenases, and by implication of other enzyme families.
6

Molecular Simulation of Enzyme Catalysis and Inhibition

Bjelic, Sinisa January 2007 (has links)
The reaction mechanisms for the hemoglobin degrading enzymes in the Plasmodium falciparum malaria parasite, plasmepsin II (Plm II) and histo-aspartic protease (HAP), have been analyzed by molecular simulations. The reaction free energy profiles, calculated by the empirical valence bond (EVB) method in combination with molecular dynamics (MD) and free energy perturbation (FEP) simulations are in good agreement with experimental data. Additional computational methods, such as homology modelling and automated substrate docking, were necessary to generate a 3D model and a reactive substrate conformation before the reaction mechanism in HAP could be investigated. HAP is found to be an aspartic protease with a peptide cleaving mechanism similar to plasmepsin II. The major difference between these enzymes is that the negatively charged tetrahedral intermediate is stabilized by the charged histidine in HAP while in Plm II it is a neutral aspartic acid. Also the reaction mechanism for two other aspartic proteases, cathepsin D and HIV-1 protease, was simulated. These enzymes are relevant both for the inhibitor selectivity and for obtaining a general picture of catalysis in aspartic proteases. Another project involves inhibitor design towards plasmepsins. In particular, Plm II directed inhibitors based on the dihydroxyethylene scaffold have been characterized computationally. Molecular dynamics (MD) simulations were used to propagate the investigated system through time and to generate ensembles used for the calculation of free energies. The ligand binding affinities were calculated with the linear interaction energy (LIE) method. The most potent inhibitor had a Ki value of 6 nM and showed 78 % parasite inhibition when tested on red blood cells infected by malaria parasite P. falciparum. Citrate synthase is part of the citric acid cycle and is present in organisms that live in cold sea water as well as hot springs. The temperature adaptation of citrate synthase to cold and heat was investigated in terms of the difference in transition state stabilization between the psychrophilic, mesophilic and hyperthermophilic homologues. The EVB, FEP and MD methods were used to generate reaction free energy profiles. The investigated energetics points toward the electrostatic stabilization during the reaction as the major difference between the different citrate synthase homologues. The electrostatic stabilization of the transition state is most effective in the following order of the citrate synthase homologues: hyperthermophile, mesophile, psycrophile. This could be a general rule for temperature adaptation of enzyme catalysis.
7

An Exploration into the Molecular Recognition of Signal Transducer and Activator of Transcription 3 Protein Using Rationally Designed Small Molecule Binders

Shahani, Vijay Mohan 14 January 2014 (has links)
Signal transducer and activator of transcription 3 (STAT3) is a cancer-driving proto-oncoprotein that represents a novel target for the development of chemotherapeutics. In this study, the functional requirements to furnish a potent STAT3 inhibitor was investigated. First, a series of peptidomimetic inhibitors were rationally designed from lead parent peptides. Prepared peptidomimetics overcame the limitations normally associated with peptide agents and displayed improved activity in biophysical evaluations. Notably, lead peptidomimetic agents possessed micromolar cellular activity which was unobserved in both parent peptides. Peptidomimetic design relied on computational methods that were also employed in the design of purine based STAT3 inhibitory molecules. Docking studies with lead STAT3-SH2 domain inhibitory molecules identified key structural and chemical information required for the construction of a pharmacophore model. 2,6,9-heterotrisubstituted purines adequately fulfilled the pharmacophore model and a library of novel purine-based STAT3 inhibitory molecules was prepared utilizing Mitsunobu chemistry. Several agents from this new library displayed high affinity for the STAT3 protein and effectively disrupted the STAT3:STAT3-DNA complex. Furthermore, these agents displayed cancer-cell specific toxicity through a STAT3 dependant mechanism. While purine agents elicited cellular effects, the dose required for cellular efficacy was much higher than those observed for in vitro STAT3 dimer disruption. The diminished cellular activity could be attributed to the apparent poor cell permeability of the first generation purine library; thus, a second library of purine molecules was constructed to improve cell penetration. Unfortunately, iii 2nd generation purine inhibitors failed to disrupt phosphorylated STAT3 activity and suffered from poor cell permeability. However, a lead sulfamate agent was discovered that showed potent activity against multiple myeloma cancer cells. Investigations revealed potential kinase inhibitory activity as the source of the sulfamate purine’s biological effect. Explorations into the development of a potent STAT3 SH2 domain binder, including the creation of salicylic purine and constrained pyrimidine molecules, are ongoing. Finally, progress towards the creation of a macrocyclic purine combinatorial library has been pursued and is reported herein.
8

An Exploration into the Molecular Recognition of Signal Transducer and Activator of Transcription 3 Protein Using Rationally Designed Small Molecule Binders

Shahani, Vijay Mohan 14 January 2014 (has links)
Signal transducer and activator of transcription 3 (STAT3) is a cancer-driving proto-oncoprotein that represents a novel target for the development of chemotherapeutics. In this study, the functional requirements to furnish a potent STAT3 inhibitor was investigated. First, a series of peptidomimetic inhibitors were rationally designed from lead parent peptides. Prepared peptidomimetics overcame the limitations normally associated with peptide agents and displayed improved activity in biophysical evaluations. Notably, lead peptidomimetic agents possessed micromolar cellular activity which was unobserved in both parent peptides. Peptidomimetic design relied on computational methods that were also employed in the design of purine based STAT3 inhibitory molecules. Docking studies with lead STAT3-SH2 domain inhibitory molecules identified key structural and chemical information required for the construction of a pharmacophore model. 2,6,9-heterotrisubstituted purines adequately fulfilled the pharmacophore model and a library of novel purine-based STAT3 inhibitory molecules was prepared utilizing Mitsunobu chemistry. Several agents from this new library displayed high affinity for the STAT3 protein and effectively disrupted the STAT3:STAT3-DNA complex. Furthermore, these agents displayed cancer-cell specific toxicity through a STAT3 dependant mechanism. While purine agents elicited cellular effects, the dose required for cellular efficacy was much higher than those observed for in vitro STAT3 dimer disruption. The diminished cellular activity could be attributed to the apparent poor cell permeability of the first generation purine library; thus, a second library of purine molecules was constructed to improve cell penetration. Unfortunately, iii 2nd generation purine inhibitors failed to disrupt phosphorylated STAT3 activity and suffered from poor cell permeability. However, a lead sulfamate agent was discovered that showed potent activity against multiple myeloma cancer cells. Investigations revealed potential kinase inhibitory activity as the source of the sulfamate purine’s biological effect. Explorations into the development of a potent STAT3 SH2 domain binder, including the creation of salicylic purine and constrained pyrimidine molecules, are ongoing. Finally, progress towards the creation of a macrocyclic purine combinatorial library has been pursued and is reported herein.
9

Discrimination of Methionine Sulfoxide and Sulfone by Human Neutrophil Elastase

Leahy, Darren, Grant, Cameron, Jackson, Alex, Duff, Alex, Tardiota, Nicholas, Van Haeften, Jessica, Chen, Xingchen, Peake, Jonathan M., Kruppa, Michael D., Smith, Eliot T., Johnson, David A., Lott, William B., Harris, Jonathan M. 01 September 2021 (has links)
Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxida-tive pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken to-gether, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elas-tase “super substrates” that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.
10

EPR Spectroscopy of Five-Coordinate Co(II) Complexes

Clarkson, Andrew C. 27 August 2018 (has links)
No description available.

Page generated in 0.0558 seconds