• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Scaffolding Proteins Altered in the Ability to Perform a Critical Conformational Switch

Cherwa, Jr., James Edward January 2009 (has links)
Throughout recent history scientists have struggled to elucidate the biochemical and biophysical mechanisms that guide the assembly of macromolecular structures. The early models of "sub-assembly" or "self assembly" attempted to explain how individual components could interact in a precisely regulated manner to form higher-ordered complex biological structures. Subsequent studies, using viral systems as assembly models, demonstrated how protein-protein and protein-nucleic acid interactions assist in lowering the thermodynamic barriers that typically disfavor assembly.Due to their simplicity, viruses provide an ideal system to investigate the biophysical mechanisms that drive the assembly of complex biological structures. Proper virion assembly requires numerous macromolecular interactions that proceed along an ordered morphogenetic pathway. While structural proteins are incorporated into the final product, morphogenesis is equally dependent upon scaffolding proteins, which are not included in the mature virion. Since the identification of scaffolding proteins in the bacteriophage P22, homologues have been discovered in many systems. Scaffolding proteins play multiple roles during morphogenesis by inducing protein conformational switches and lowering the thermodynamic barriers to promote virion assembly, while ensuring the efficiency and fidelity of the final product.

Page generated in 0.0493 seconds