• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determining the fine structure of the entrainment zone in cloud-topped boundary layers / Determining inversion structure at the top of the planetary boundary layer

Horner, Michael S. 03 1900 (has links)
Approved for public release, distribution is unlimited / The objective of this thesis is to obtain a better understanding of cloud-top entrainment through an in-depth analysis of entrainment-zone structure. In situ aircraft measurements taken during the Atlantic Stratocumulus Transition Experiment (ASTEX) were used for this purpose. Using data collected from multiple cloud-top penetrations, the presence of an interfacial layer in-between the top of the cloud mixed-layer and the base of the free atmosphere is identified and consequently defined as the entrainment zone. The depth of the entrainment zone is on the order of tens of meters, where turbulence and sometimes cloud droplets are detectable. Inhomogeneous mixing was found to occur within the entrainment zone. Parcels of inversion-layer air and boundary-layer air are identified within the entrainment zone. Analyses suggest that turbulence intensity and cloud amount in the entrainment zone vary depending on the distribution of entrainment mixing fraction. Furthermore, continuous mixing in the entrainment zone appears to dissipate the upper-cloud layer. However, continuous dissipation of the upper-cloud layer has not been observed. Further study is needed to determine the interaction between cloud-top entrainment and the full integration of boundary-layer dynamics. / Captain, United States Air Force

Page generated in 0.3116 seconds