• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RF Sensing and Receiving Circuits for a Cognitive Radio

Wang, Fu-Kang 26 July 2009 (has links)
In this thesis, various kinds of theory to account for injection locking and pulling in the literature are studied and compared. On this basis, this thesis derives a generalized locking equation when injection signal is modulated signal. In applications, a novel RF sensing circuit for cognitive radio system is proposed using injection locking and frequency demodulation. Detailed circuit architecture and sensing principle are also described in the thesis. In implementation, a hybrid VCO and a CMOS VCO have been separately used with the other components to establish the RF sensing circuit. The simulation relies on a discrete-time numerical method. Comparison between measurement and simulation shows very good agreement. This RF sensing circuit can simultaneously sense frequency and power with a sensing speed up to 400 MHz/ms and a sensing sensitivity as low as -80 dBm, showing that the presented prototype can fast and reliably sense frequency and power for analog and digital modulation signals.
2

Study of Injection Locking and Pulling in Local Oscillators.

Hsiao, Chieh-Hsun 25 July 2008 (has links)
This thesis is composed of three parts. In the first part, various kinds of theory to account for injection locking and pulling in the available literature are studied and compared. In the second part, this thesis proposes an experimental setup with self-made hybrid VCO and commercially available equipments and components to measure the characteristics of injection locking and pulling. This thesis also performs simulation to verify the measured results. The simulation mainly relies on the circuit envelope technique that has been developed in our laboratory. Comparison between measurement and simulation shows good agreement in the injection-locking characteristic curves and the injection-pulling spectrum characteristics. In the third part, this thesis carries out an RFIC design for a fractional-N frequency synthesizer with special features on quantization-noise cancellation and PLL nonlinearity reduction using TSMC 0.13£gm CMOS process.

Page generated in 0.0968 seconds