Spelling suggestions: "subject:"injective hulle"" "subject:"injective bulls""
1 |
Injective Hulls of ModulesTiwary, Awadhesh Kumar 10 1900 (has links)
<p> By an injective hull of a module M over any ring we mean a minimal injective extension module E ≥ M. Our main objective in this thesis is to find an explicit description of injective hulls of modules in some special cases and to study their properties.</p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
Módulos injetivos e a dualidade de MatlisBustos Ríos, Daniel Francisco January 2015 (has links)
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. / The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent.
|
3 |
Módulos injetivos e a dualidade de MatlisBustos Ríos, Daniel Francisco January 2015 (has links)
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. / The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent.
|
4 |
Módulos injetivos e a dualidade de MatlisBustos Ríos, Daniel Francisco January 2015 (has links)
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. / The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent.
|
Page generated in 0.0408 seconds