• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Injective Hulls of Modules

Tiwary, Awadhesh Kumar 10 1900 (has links)
<p> By an injective hull of a module M over any ring we mean a minimal injective extension module E ≥ M. Our main objective in this thesis is to find an explicit description of injective hulls of modules in some special cases and to study their properties.</p> / Thesis / Doctor of Philosophy (PhD)
2

Módulos injetivos e a dualidade de Matlis

Bustos Ríos, Daniel Francisco January 2015 (has links)
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. / The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent.
3

Módulos injetivos e a dualidade de Matlis

Bustos Ríos, Daniel Francisco January 2015 (has links)
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. / The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent.
4

Módulos injetivos e a dualidade de Matlis

Bustos Ríos, Daniel Francisco January 2015 (has links)
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. / The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent.

Page generated in 0.0432 seconds