• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient Response of Tapered and Angled Injectors Subjected to a Passing Detonation Wave

Hasan Fatih Celebi (6930197) 02 August 2019 (has links)
A total number of 849 tests were conducted to investigate the transient response of liquid injectors with various geometries including different taper angles, injection angles and orifice lengths. High-speed videos were analyzed to characterize refill times and back-flow distances of nine different injector geometries subjected to a ethylene-oxygen detonation wave. Water was used as the working fluid and experiments were performed at two different vessel pressure settings (60 and 100 psia). Although a minimal difference was found between plain and angled injectors due to having constant orifice diameter geometry, introduction of taper angle resulted in more agile injectors with less sensitivity to ambient and feed pressures. Several attempts were made to normalize refill times and obtain a general trend for transient response of liquid injectors.
2

Experimental Studies of Liquid Injector Response and Wall Heat Flux in a Rotating Detonation Rocket Engine

Dasheng Lim (8037983) 25 November 2019 (has links)
<div>The results of two experimental studies are presented in this document. The first is an investigation on the transient response of plain orifice liquid injectors to transverse detonation waves at elevated pressures of 414, 690, and 1,030 kPa (60, 100, and 150 psia). Detonations were produced using a predetonator which utilized hydrogen and</div><div>oxygen or ethylene and oxygen as reactants. For injectors of identical diameter, an increase in length correlated with a decrease in the maximum back-flow distance. A preliminary study using an injector of larger diameter suggested that for injectors of the same length under the same pressure drop, the larger injector was more resistant to back-flow. Refill time of the injectors was found to be inversely-proportional to detonation pressure ratio and injector stiffness, and a curve fit was produced to relate the three parameters.</div><div><br></div><div>The second experimental campaign was the hotfire testing of an RP-2-GOX rotating detonation engine. Total engine mass flow rates ranged from 0.8 to 3.5 kg/s (1.7 to 7.7 lbm/s) and static chamber pressures between 316 and 1,780 kPa (46 and 258 psia) were produced. In a majority of tests, between four and six co-rotating detonation waves were observed. Using an array of 36 embedded thermocouple probes, chamber outer wall heat fluxes between 2.8 and 8.3 MW/m<sup>2</sup> were estimated using an inverse heat transfer method of calculation. Performance of the RP-2 injector was assessed by relating to the information obtained in the prior injector response study.</div>
3

Transient Response of Gas-Liquid Injectors Subjected to Transverse Detonation Waves

Kevin James Dille (9505169) 16 December 2020 (has links)
<p>A series of experimental tests were performed to study the transient response of gas/liquid injectors exposed to transverse detonation waves. A total of four acrylic injectors were tested to compare the response between gas/liquid and liquid only injectors, as well as compare the role of various geometric features of the notional injector design. Detonation waves are produced through the combustion of ethylene and oxygen, at conditions to produce average wave pressures between 128 and 199 psi. The injectors utilize water and nitrogen to simulate the injection of liquid and gaseous propellants respectively. Quantification of injector refill times was possible through the use of a high-speed camera recording at a frame rate of 460,000 frames per second. High frequency pressure measurements in both the gaseous and liquid manifolds allow for quantification of the temporal pressure response of the injectors. Variations in simulant mass flow rates, measured through the use of sonic nozzles and cavitating venturis, produce pressure drops up to 262 psi across the injector. Injector refill times are found to be a strong function of the impulse delivered across the injector. Manifold acoustics were found to play a large role in injector response as manifolds that promote manifold over-pressurizations during the injector recovery period recover quicker than designs that limit this response.</p>

Page generated in 0.0524 seconds