• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison and Characterization of Different Concussive Brain Injury Events

Kendall, Marshall January 2016 (has links)
Concussions are debilitating injuries affecting the short and long-term health of those who suffer from them. While an increased awareness of the injury has helped lead to a better understanding of the importance of better monitoring and treatment protocols, concussive injuries continue to occur at an alarming rate. Current injury risk thresholds exist and are used in the development of better equipment to protect athletes in high impact sports, however much of this data is based on simulations and/or cadaveric and animal model data from falls. Thus, there is a lack of data from concussive injuries resulting from a multitude of injury events within different sports, including collisions, falls and punches. The purpose of this thesis was to use dynamic response characteristics and brain tissue response to compare four different injury events from reconstructions of real life concussive injury events. This research was designed to provide information related to brain trauma characteristics specific to four common concussive brain injury events. Seventy-two (72) injury reconstructions were used in this study involving four injury events; collisions, helmeted falls, unhelmeted falls and punches. The results from the first study revealed that while all injury events produced similar MPS and Von Mises stress values, the injury events produced different peak linear and rotational accelerations. In terms of risk for concussive injury, differences were also found between percent risk for concussion and the specific injury events, questioning the validity of current concussive thresholds’ applicability to across all types of concussive injury events. The second study aimed to characterize each concussive injury event by means of specific kinematic characteristics unique to that particular event. The results showed that dynamic response variables that accounted for the most variance changed dependant on the concussive producing event. The third study compared maximal principle strain and strain fields within the brain by the specific injury event. The results showed that global strain within specific regions of the brain were significantly different between the different injury events. Furthermore, unique strain fields within the cerebrum were found between the four concussive injury events. The three studies in this research program characterize four common concussive injury events found in sport. It aimed to describe the unique dynamic response characteristics for each injury event that may have significant influence on protective equipment development and standards testing. Finally, though the aim of this study was not to correlate location of strains within the brain with onset of concussive symptoms and duration, this study demonstrated that the concussive producing event can have an effect on location of peak strain and strain field within regions of the cerebrum associated with concussive symptoms.
2

The Influence of Dynamic Response Characteristics on Traumatic Brain Injury

Post, Andrew 22 July 2013 (has links)
Research into traumatic brain injury (TBI) mechanisms is essential for the development of methods to prevent its occurrence. One of the most common ways to incur a TBI is from falls, especially for the young and very old. The purpose of this thesis was to investigate how the acceleration loading curves influenced the occurrence of different types of TBI, namely: epidural hematoma, subdural hematoma, subarachnoid hemorrhage, and contusion. This investigation was conducted in three parts. The first study conducted reconstructions of 20 TBI cases with varying outcomes using MADYMO, Hybrid III, and finite element methodologies. This study provided a dataset of threshold values for each of the TBI injuries measured in parameters of strain and stress. The results of this study indicated that using a combined reconstructive approach produces results which are in keeping with the literature for TBI. The second study examined how the characteristics of the loading curves which were produced from each reconstruction influenced the outcome using a principal components analysis. It was found that the duration of the event accounted for much of the variance in the results, followed with the acceleration components. Different curve characteristics also accounted for differing amounts of variance in each of the lesion types. Study 3 examined how the dynamic response of the impact influenced where in the brain a subdural hematoma (SDH) could occur. It was found that the largest magnitudes of acceleration produced SDH in the parietal lobe, and the lowest in the occipital lobe. Overall this thesis examined the mechanism of injury for TBI using a large dataset with methodologies which complement each other’s limitations. As a result in depth information of the nature of TBI was attained and information provided which may be used to improve future protection and standard development.
3

The Influence of Dynamic Response Characteristics on Traumatic Brain Injury

Post, Andrew January 2013 (has links)
Research into traumatic brain injury (TBI) mechanisms is essential for the development of methods to prevent its occurrence. One of the most common ways to incur a TBI is from falls, especially for the young and very old. The purpose of this thesis was to investigate how the acceleration loading curves influenced the occurrence of different types of TBI, namely: epidural hematoma, subdural hematoma, subarachnoid hemorrhage, and contusion. This investigation was conducted in three parts. The first study conducted reconstructions of 20 TBI cases with varying outcomes using MADYMO, Hybrid III, and finite element methodologies. This study provided a dataset of threshold values for each of the TBI injuries measured in parameters of strain and stress. The results of this study indicated that using a combined reconstructive approach produces results which are in keeping with the literature for TBI. The second study examined how the characteristics of the loading curves which were produced from each reconstruction influenced the outcome using a principal components analysis. It was found that the duration of the event accounted for much of the variance in the results, followed with the acceleration components. Different curve characteristics also accounted for differing amounts of variance in each of the lesion types. Study 3 examined how the dynamic response of the impact influenced where in the brain a subdural hematoma (SDH) could occur. It was found that the largest magnitudes of acceleration produced SDH in the parietal lobe, and the lowest in the occipital lobe. Overall this thesis examined the mechanism of injury for TBI using a large dataset with methodologies which complement each other’s limitations. As a result in depth information of the nature of TBI was attained and information provided which may be used to improve future protection and standard development.
4

In-depth accident investigation of pedestrian impact dynamics and development of head injury risk functions / Évaluation des conditions d'impact de la tête en cas d'accident de piéton

Peng, Yong 17 September 2012 (has links)
Les piétons comptent parmi les usagers de la route les plus vulnérables dans la mesure où ils ne bénéficient d'aucune protection en cas d'impact avec un véhicule automobile. Plus de 1,17 millions de personnes sont tués sur la route de part le monde dont environ 65% ce piétons. Les blessures de la tête, souvent fatales, concernent environ 30 % des blessures enregistrées. Ces blessures conduisent à des incapacités de longue durée avec un coût sociétal et économique immense. Il est par conséquent essentiel de comprendre aussi bien les mécanismes d'accidents que les mécanismes de blessure de la tête afin d'intervenir sur la conception de la face avant des véhicules automobile. Dans ce contexte l'objet de la présente thèse est d'analyser la répons dynamique du piton en cas d'accident et ce contribuer au développement de critères de blessure de la tête. Dans le but d'étudier l'influence de la position du piéton, de la géométrie de la face avant du véhicule et de sa vitesse initiale sur la cinématique du piéton et les conditions d'impact de la tête, une simulation multi-corps a été mise en place. Les résultats de ces simulations donnent la vitesse et l'angle d'impact de la tête et la position de l'impact sur le véhicule. Cette analyse paramètrique a été conduite sur cinq types de véhicules et pour un modèle humain adulte et enfant de 6 ans et a permis de consolider les connaissances sur la conditions d'impact de la tête en comparaison avec les tests normatifs en vigueur.[...] / Pedestrians are regarded as an extremely vulnerable and high-risk group of road users since they are unprotected in vehicle impacts. More than 1.17 million people throughout the world are killed in road traffic accidents each year. Where, about 65% of deaths involve pedestrians. The head injuries in vehicle-pedestrian collisions accounted for about 30% of all reported injuries on different body regions, which often resulted in a fatal consequence. Such injuries can result in disabilities and long-term sequence, which lead to significant social costs. It is therefore important to study the characteristics of pedestrian accidents and understand the head injury mechanism of the pedestrian so as to improve vehicle design for pedestrian protection. The aim of this study is to investigate pedestrian dynamic response and develop head injury risk functions.In order to investigate the effect of pedestrian gait, vehicle front geometry and impact velocity on the dynamic responses of the head, the multi-body dynamic (MBD) models were used to simulate the head responses in vehicle to pedestrian collisions with different vehicle types in terms of head impact point measured with Wrap Around Distance (WAD), head relative velocity and impact angle. A simulation matrix is established using five vehicle types, and two mathematical models of the pedestrians represented a 50th male adult and a 6 year old child as well as seven pedestrian gaits based on typical postures in pedestrian accidents. In order to simulate a large range of impact conditions, four vehicle velocities (30 km/h, 40 km/h, 50 km/h and 60 km/h) are considered for each pedestrian position and vehicle type.A total of 43 passenger car versus pedestrian accidents were selected from In-depth Investigation of Vehicle Accidents in Changsha, China (IVAC) and German In-Depth Accident Study (GIDAS) database for simulation study. According to real-world accident investigation, accident reconstructions were conducted using multi-body system (MBS) pedestrian and car models under MADYMO simulation environment to calculate head impact conditions, in terms of head impact velocity, head position and head orientation. In order to study kinematics of adult pedestrian, relationship curves: head impact time, throw distance, head impact velocity and vehicle impact velocity, were computed and logistic regression models: head impact velocity, resultant angular velocity, HIC value, head contact force and head injuries, were developed based on the results from accident reconstructions.The automobile windshield, with which pedestrians come into frequent contact, has been identified as one of the main contact sources for pedestrian head injuries. In order to investigate the mechanical behavior of windshield laminated glass in the caseof pedestrian head impact, windshield FE models were set up using different combination for the modeling of glass and PVB, with various connection types and two mesh sizes (5 mm and 10 mm). Each windshield model was impacted with a standard adult headform impactor in an LS-DYNA simulation environment, and the results were compared with the experimental data reported in the literatures.In order to assess head injury risks of adult pedestrians, accident reconstructions were carried out by using Hybrid III head model based on the real-world pedestrian accidents. The impact conditions were obtained from the MBS simulation, including head impact velocity, head position and head orientation. They were used to set the initial conditions in a simulation of a Hybrid III FE head model striking a windshield FE model. Logistic regression models, Skull Fracture Correlate (SFC), head linear acceleration, Head Impact Power (HIP), HIC value, resultant angular acceleration and head injuries, were developed to study brain injury risk.{...]

Page generated in 0.0854 seconds