• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical computations of the unsteady flow in a radial turbine

Hellström, Fredrik January 2008 (has links)
<p>Non-pulsatile and pulsatile flow in bent pipes and radial turbine has been assessed with numerical simulations. The flow field in a single bent pipe has been computed with different turbulence modelling approaches. A comparison with measured data shows that Implicit Large Eddy Simulation (ILES) gives the best agreement in terms of mean flow quantities. All computations with the different turbulence models qualitatively capture the so called Dean vortices. The Dean vortices are a pair of counter-rotating vortices that are created in the bend, due to inertial effects in combination with a radial pressure gradient. The pulsatile flow in a double bent pipe has also been considered. In the first bend, the Dean vortices are formed and in the second bend a swirling motion is created, which will together with the Dean vortices create a complex flow field downstream of the second bend. The strength of these structures will vary with the amplitude of the axial flow. For pulsatile flow, a phase shift between the velocity and the pressure occurs and the phase shift is not constant during the pulse depending on the balance between the different terms in the Navier- Stokes equations.</p><p>The performance of a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has also been investigated by using ILES. To assess the effect of pulsatile inflow conditions on the turbine performance, three different cases have been considered with different frequencies and amplitude of the mass flow pulse and different rotational speeds of the turbine wheel. The results show that the turbine cannot be treated as being quasi-stationary; for example, the shaft power varies with varying frequency of the pulses for the same amplitude of mass flow. The pulsatile flow also implies that the incidence angle of the flow into the turbine wheel varies during the pulse. For the worst case, the relative incidence angle varies from approximately −80° to +60°. A phase shift between the pressure and the mass flow at the inlet and the shaft torque also occurs. This phase shift increases with increasing frequency, which affects the accuracy of the results from 1-D models based on turbine maps measured under non-pulsatile conditions.</p><p>For a turbocharger working under internal combustion engine conditions, the flow into the turbine is pulsatile and there are also unsteady secondary flow components, depending on the geometry of the exhaust manifold situated upstream of the turbine. Therefore, the effects of different perturbations at the inflow conditions on the turbine performance have been assessed. For the different cases both turbulent fluctuations and different secondary flow structures are added to the inlet velocity. The results show that a non-disturbed inlet flow gives the best performance, while an inflow condition with a certain large scale eddy in combination with turbulence has the largest negative effect on the shaft power output.</p>
2

Heat transfer and pressure drop in microchannels with different Inlet geometries for laminar and transitional flow of water

Garach, D.V. (Darshik Vinay) January 2014 (has links)
This study consists of an experimental investigation into the fluid flow and heat transfer aspects of microchannels. Rectangular copper microchannels of hydraulic diameters 1.05 mm, 0.85 mm and 0.57 mm were considered. Using water as the working fluid, heat transfer and pressure drop characteristics were determined under a constant surface heat flux for different inlet configurations in the laminar and transitional regimes. Three inlet geometries were experimentally investigated: a sudden contraction inlet, a bellmouth inlet and a swirl-generating inlet. The influence of the inlet conditions on the pressure drop, Nusselt number and critical Reynolds number was determined experimentally. Pressure drop results showed good agreement with existing correlations for adiabatic conditions. Diabatic friction factor results for the sudden contraction and bellmouth inlets were overpredicted when using the friction factor results from literature. It is noted that a relationship between the pressure drop and heat flux existed in the laminar regime, where an increase in the heat input resulted in a decrease in the friction factor. The bellmouth inlet condition showed an enhancement of the heat transfer in the transition regime compared with the sudden contraction inlet. The critical Reynolds number for the onset of transition for the sudden contraction inlet was found to be approximately 1 950, with a sharp rise to the turbulent regime thereafter. The bellmouth inlet influenced the originating point of the transition regime, which commenced at a Reynolds number of approximately 1 600. A smoother and more gradual increase to the turbulent regime was observed as an effect of the bellmouth inlet over the sudden contraction inlet. The swirl-generating inlet condition produced higher friction factor results in all three flow regimes. Transition occurred at a Reynolds number of approximately 1 500 and the turbulent regime was quickly ii reached thereafter. The turbulent regime friction factor was found to be significantly higher with the swirl inlet compared with both the sudden contraction and bellmouth inlets. Nusselt numbers continued to increase until the onset of the transition regime, and did not converge to a constant value as stated in theory. Similar enhancement of the transition regime with the bellmouth inlet was observed for the Nusselt numbers as with the friction factors. The initial turbulent regime results followed the trend of the theory for both the sudden contraction and bellmouth inlet conditions for most of the data sets, with deviation occurring in some of the 0.57 mm test cases. The swirl inlet Nusselt number results were significantly underpredicted by the theory in the early turbulent regime. / Dissertation (MEng)--University of Pretoria, 2014. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted
3

Numerical computations of the unsteady flow in a radial turbine

Hellström, Fredrik January 2008 (has links)
Non-pulsatile and pulsatile flow in bent pipes and radial turbine has been assessed with numerical simulations. The flow field in a single bent pipe has been computed with different turbulence modelling approaches. A comparison with measured data shows that Implicit Large Eddy Simulation (ILES) gives the best agreement in terms of mean flow quantities. All computations with the different turbulence models qualitatively capture the so called Dean vortices. The Dean vortices are a pair of counter-rotating vortices that are created in the bend, due to inertial effects in combination with a radial pressure gradient. The pulsatile flow in a double bent pipe has also been considered. In the first bend, the Dean vortices are formed and in the second bend a swirling motion is created, which will together with the Dean vortices create a complex flow field downstream of the second bend. The strength of these structures will vary with the amplitude of the axial flow. For pulsatile flow, a phase shift between the velocity and the pressure occurs and the phase shift is not constant during the pulse depending on the balance between the different terms in the Navier- Stokes equations. The performance of a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has also been investigated by using ILES. To assess the effect of pulsatile inflow conditions on the turbine performance, three different cases have been considered with different frequencies and amplitude of the mass flow pulse and different rotational speeds of the turbine wheel. The results show that the turbine cannot be treated as being quasi-stationary; for example, the shaft power varies with varying frequency of the pulses for the same amplitude of mass flow. The pulsatile flow also implies that the incidence angle of the flow into the turbine wheel varies during the pulse. For the worst case, the relative incidence angle varies from approximately −80° to +60°. A phase shift between the pressure and the mass flow at the inlet and the shaft torque also occurs. This phase shift increases with increasing frequency, which affects the accuracy of the results from 1-D models based on turbine maps measured under non-pulsatile conditions. For a turbocharger working under internal combustion engine conditions, the flow into the turbine is pulsatile and there are also unsteady secondary flow components, depending on the geometry of the exhaust manifold situated upstream of the turbine. Therefore, the effects of different perturbations at the inflow conditions on the turbine performance have been assessed. For the different cases both turbulent fluctuations and different secondary flow structures are added to the inlet velocity. The results show that a non-disturbed inlet flow gives the best performance, while an inflow condition with a certain large scale eddy in combination with turbulence has the largest negative effect on the shaft power output. / QC 20101111
4

Unsteady inlet condition generation for Large Eddy Simulation CFD using particle image velocimetry

Robinson, Mark D. January 2009 (has links)
In many areas of aerodynamics the technique of Large Eddy Simulation (LES) has proved a practical way of modelling the unsteady phenomena in numerical simulations. Few applications are as dependent on such an approach as the prediction of flow within a gas turbine combustor. Like any form of Computational Fluid Dynamics (CFD), LES requires specification of the velocity field at the inflow boundary, with much evidence suggesting the specification of inlet turbulence can be critical to the resultant accuracy of the prediction. While a database of time-resolved velocity data may be obtained from a precursor LES calculation, this technique is prohibitively expensive for complex geometries. An alternative is to use synthetic inlet conditions obtained from experimental data High-speed Particle Image Velocimetry (PIV) is used here to provide planar velocity data at up to 1kHz temporal resolution in two test cases representative of gas turbine combustor flows (a vortex generator in a duct and an idealised combustor). As the data sampling rate is approaching a typical LES time-step it introduces the possibility of applying instantaneous experimental data directly as an inlet condition. However, as typical solution domain inlet regions for gas turbine combustor geometries cannot be adequately captured in a single field of PIV data, it is necessary to consider a method by which a synchronous velocity field may be obtained from multiple PIV fields that were not captured concurrently. A method is proposed that attempts to achieve this by a combined process of Linear Stochastic Estimation and high-pass filtering. The method developed can be generally applied without a priori assumptions of the flow and is demonstrated to produce a velocity field that matches very closely that of the original PIV, with no discontinuities in the velocity correlations. The fidelity and computational cost of the method compares favourably to several existing inlet condition generation methods. Finally, the proposed and existing methods for synthetic inlet condition generation are applied to LES predictions of the two test cases. There is shown to be significant differences in the resulting flow, with the proposed method showing a marked ii reduction in the adjustment period that is required to establish turbulent equilibrium downstream of the inlet. However, it is noted the presence of downstream turbulence generating features can mask any differences in the inlet condition, to the extent that the flow in the core of the combustor test case is found to be insensitive to the inlet condition applied at the entry to the feed annulus for the test conditions applied here.
5

Experimental Investigations of Flow Development, Gap Instability and Gap Vortex Street Generation in Eccentric Annular Channels

Choueiri, George H. 02 May 2014 (has links)
Isothermal flow development, gap instability, and gap vortex street generation in eccentric annular channels have been studied experimentally. A representative paradigm of a flow in a highly eccentric annular channel was examined for a channel having an inner-to-outer diameter ratio d/D = 0.50 and an eccentricity e = 0.8 for a Reynolds number Re = 7300. Observation of the flow development has identified three distinct regions: the entrance region, the fluctuation-growth region and the rapid-mixing region. Weak quasi-periodic velocity fluctuations were first detected in the downstream part of the entrance region, and grew into very strong ones, reaching peak-to-peak amplitudes in the narrow gap that were nearly 60% of the bulk velocity. The dependence on inlet conditions, d/D, e and Re on the development and structure of flows was also investigated. Experimental conditions covered the ranges: 0 ≤ Re ≤ 19000, 0 ≤ e ≤ 0.9 and d/D = 0.25, 0.50 and 0.75. For Re < 7000, the Strouhal number, the normalized mid-gap axial flow velocity and the axial and cross-flow fluctuation intensities at mid-gap were found to increase with increasing Re and to depend strongly on inlet conditions. At higher Re, however, these parameters reached asymptotic values that were only mildly sensitive to inlet conditions. A map was constructed for the various stages of periodic motions vs. e and Re and it was found that, for e < 0.5 or Re < 1100, the flow was unconditionally stable as far as gap instability is concerned. For e ≤ 0.5, transition to turbulence occurred at Re ≈ 6000, whereas, for 0.6 ≤ e ≤ 0.9, the critical Reynolds number for the formation of periodic motions was found to increase with eccentricity from 1100 for e = 0.6 to 3800 for e = 0.9. The use of an empirically derived "mixing layer Strouhal number" permitted a universal description of gap vortex street periodicity in eccentric annular channels. This study has contributed to our understanding of the physical mechanisms that lead to gap instability and the development of a gap vortex street and the dependence of these flow phenomena on the channel geometry and the dynamic conditions of the flow.
6

Experimental Investigations of Flow Development, Gap Instability and Gap Vortex Street Generation in Eccentric Annular Channels

Choueiri, George H. January 2014 (has links)
Isothermal flow development, gap instability, and gap vortex street generation in eccentric annular channels have been studied experimentally. A representative paradigm of a flow in a highly eccentric annular channel was examined for a channel having an inner-to-outer diameter ratio d/D = 0.50 and an eccentricity e = 0.8 for a Reynolds number Re = 7300. Observation of the flow development has identified three distinct regions: the entrance region, the fluctuation-growth region and the rapid-mixing region. Weak quasi-periodic velocity fluctuations were first detected in the downstream part of the entrance region, and grew into very strong ones, reaching peak-to-peak amplitudes in the narrow gap that were nearly 60% of the bulk velocity. The dependence on inlet conditions, d/D, e and Re on the development and structure of flows was also investigated. Experimental conditions covered the ranges: 0 ≤ Re ≤ 19000, 0 ≤ e ≤ 0.9 and d/D = 0.25, 0.50 and 0.75. For Re < 7000, the Strouhal number, the normalized mid-gap axial flow velocity and the axial and cross-flow fluctuation intensities at mid-gap were found to increase with increasing Re and to depend strongly on inlet conditions. At higher Re, however, these parameters reached asymptotic values that were only mildly sensitive to inlet conditions. A map was constructed for the various stages of periodic motions vs. e and Re and it was found that, for e < 0.5 or Re < 1100, the flow was unconditionally stable as far as gap instability is concerned. For e ≤ 0.5, transition to turbulence occurred at Re ≈ 6000, whereas, for 0.6 ≤ e ≤ 0.9, the critical Reynolds number for the formation of periodic motions was found to increase with eccentricity from 1100 for e = 0.6 to 3800 for e = 0.9. The use of an empirically derived "mixing layer Strouhal number" permitted a universal description of gap vortex street periodicity in eccentric annular channels. This study has contributed to our understanding of the physical mechanisms that lead to gap instability and the development of a gap vortex street and the dependence of these flow phenomena on the channel geometry and the dynamic conditions of the flow.

Page generated in 0.0965 seconds