• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inner Ensembles: Using Ensemble Methods in Learning Step

Abbasian, Houman 16 May 2014 (has links)
A pivotal moment in machine learning research was the creation of an important new research area, known as Ensemble Learning. In this work, we argue that ensembles are a very general concept, and though they have been widely used, they can be applied in more situations than they have been to date. Rather than using them only to combine the output of an algorithm, we can apply them to decisions made inside the algorithm itself, during the learning step. We call this approach Inner Ensembles. The motivation to develop Inner Ensembles was the opportunity to produce models with the similar advantages as regular ensembles, accuracy and stability for example, plus additional advantages such as comprehensibility, simplicity, rapid classification and small memory footprint. The main contribution of this work is to demonstrate how broadly this idea can be applied, and highlight its potential impact on all types of algorithms. To support our claim, we first provide a general guideline for applying Inner Ensembles to different algorithms. Then, using this framework, we apply them to two categories of learning methods: supervised and un-supervised. For the former we chose Bayesian network, and for the latter K-Means clustering. Our results show that 1) the overall performance of Inner Ensembles is significantly better than the original methods, and 2) Inner Ensembles provide similar performance improvements as regular ensembles.
2

Inner Ensembles: Using Ensemble Methods in Learning Step

Abbasian, Houman January 2014 (has links)
A pivotal moment in machine learning research was the creation of an important new research area, known as Ensemble Learning. In this work, we argue that ensembles are a very general concept, and though they have been widely used, they can be applied in more situations than they have been to date. Rather than using them only to combine the output of an algorithm, we can apply them to decisions made inside the algorithm itself, during the learning step. We call this approach Inner Ensembles. The motivation to develop Inner Ensembles was the opportunity to produce models with the similar advantages as regular ensembles, accuracy and stability for example, plus additional advantages such as comprehensibility, simplicity, rapid classification and small memory footprint. The main contribution of this work is to demonstrate how broadly this idea can be applied, and highlight its potential impact on all types of algorithms. To support our claim, we first provide a general guideline for applying Inner Ensembles to different algorithms. Then, using this framework, we apply them to two categories of learning methods: supervised and un-supervised. For the former we chose Bayesian network, and for the latter K-Means clustering. Our results show that 1) the overall performance of Inner Ensembles is significantly better than the original methods, and 2) Inner Ensembles provide similar performance improvements as regular ensembles.

Page generated in 0.0662 seconds