• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Inorganic Polyphosphate-Based Nanoparticles for Drug Delivery into Articular Cartilage

Nhan, Jordan 21 June 2023 (has links)
Osteoarthritis is a degenerative joint disease which affects the entire joint; however, one of its hallmarks is the progressive degeneration of the articular cartilage layer. Patients suffering from osteoarthritis exhibit chronic pain, stiffness, and a decreased range of motion, greatly affecting their quality of life. No drugs have been approved to stop the progression of osteoarthritis and focus solely on the management of symptoms. This is partly due to the challenges in delivering drugs to afflicted joints, and specifically to cartilage due to its lack of vasculature. While intra-articular injection holds promise for the local administration of drugs, small molecules are rapidly cleared from the synovial fluid. As a result, there is a need to develop effective drug delivery strategies to improve residence times in the joint to elicit a sustained therapeutic effect. Previous studies identified polyphosphate as a pro-anabolic molecule, promoting glycosaminoglycan and collagen accumulation in cartilage constructs. Therefore, polyphosphate may be a therapeutic of interest to address the degeneration of articular cartilage in patients suffering from osteoarthritis. In this study, calcium-polyphosphate and strontium-polyphosphate particles were synthesized and characterized as a potential drug carrier into articular cartilage. Physicochemical characterization revealed that the particles exhibit a spherical morphology, have a negative zeta potential, and are nanoscale in size. Biological characterization in chondrocytes confirmed cellular uptake of the particles and demonstrated a size and concentration-dependent cytotoxicity at high concentrations. Furthermore, treatment of chondrocytes with these particles resulted in a reduction in metabolic activity and cell proliferation, confirming biological effects. Preliminary studies using cartilage explants suggest that the particles can penetrate and be retained in cartilage tissue. Therefore, from the results obtained within this study, the polyphosphate-based particles may be a potential drug delivery strategy for delivery into articular cartilage.
2

The Role of Inorganic Polyphosphate in the Formation of Bioengineered Cartilage Incorporating a Zone of Calcified Cartilage In Vitro

St-Pierre, Jean-Philippe 06 December 2012 (has links)
The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects of fibroblast growth factor 18 on exopolyphosphatase activity in the tissue. Polyphosphate also appears to act in a feedback loop to control exopolyphosphatase activity. Interestingly, polyphosphate also exhibits positive effects on cartilage matrix accumulation. The potential implication of polyphosphate in the maintenance of articular cartilage homeostasis is intriguing and must be investigated further.
3

The Role of Inorganic Polyphosphate in the Formation of Bioengineered Cartilage Incorporating a Zone of Calcified Cartilage In Vitro

St-Pierre, Jean-Philippe 06 December 2012 (has links)
The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects of fibroblast growth factor 18 on exopolyphosphatase activity in the tissue. Polyphosphate also appears to act in a feedback loop to control exopolyphosphatase activity. Interestingly, polyphosphate also exhibits positive effects on cartilage matrix accumulation. The potential implication of polyphosphate in the maintenance of articular cartilage homeostasis is intriguing and must be investigated further.

Page generated in 0.0147 seconds