• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Heritability of Flight Energetics and its Associated Traits in the Bumblebee Bombus Impatiens

Billardon, Fannie January 2013 (has links)
Recent studies suggest a possible correlated evolution of wing morphology, wing beat frequency, muscle biochemistry and flight metabolic rate in bees. In order to investigate the degree to which natural selection can act on these traits, an estimation of heritability was required. Commercial and laboratory reared colonies from wild caught queens were used to estimate narrow-sense (h2) and broad-sense (H2) heritability of flight metabolic rate and its associated traits in the bumblebee Bombus impatiens. h2 estimates obtained from parent-offspring regressions were not statistically significant. H2 estimates were significant for morphological traits (body mass and wing morphology) as well as whole-animal traits (flight and resting metabolic rate, wing beat frequency) in both populations. We suggest that queens have a decrease in flight performance as a result of a trade-off between flight and fecundity, explaining the lack of significance in parent-offspring regressions.
12

Principles & Applications of Insect Flight

Jesse A Roll (9754904) 14 December 2020 (has links)
<div><div><div><div><p>Insects are the most successful animal on the planet, undergoing evolutionary adaptions in size and the development of flight that have allowed access to vast ecological niches and enabled a means by which to both prey and escape predation. Possessing some of the fastest visual systems on the planet, powerful sets of flight muscles, and mechanosensors tuned to perceive complex environments in high-fidelity, they are capable of performing acrobatic maneuvers at speeds that far exceed that of any engineered system. In turn, stable flight requires the coordinated effort of these highly specialized flight systems while performing activities ranging from evasive flight maneuvers to long-distance seasonal migrations in the presence of adverse flow conditions. As a result, the exceptional flight performance of flying insects has inspired a new class of aerial robots expressly tailored to exploit the unique aerodynamic mechanisms inherent to flapping wings. Over the course of three research studies, I explore new actuation techniques to address limitations in power and scalability of current robot platforms, develop new analytical techniques to aid in the design of insect-inspired robot flapping wings, and investigate attributes of flapping wing aerodynamics that allow insects to overcome the difficulties associated with flight in turbulent flow conditions, in an effort to advance the science of animal locomotion.</p><p>Recent advancements in the study of insect flight have resulted in bio-inspired robots uniquely suited for the confined flight environments of low Reynolds number flow regimes. Whereas insects employ powerful sets of flight muscles working in conjunction with specialized steering muscles to flap their wings at high frequencies, robot platforms rely on limited sets of mechanically amplified piezoelectric actuators and DC motors mated with gear reductions or linkage systems to generate reciprocating wing motion. As a result, these robotic systems are typically underactuated - with wing rotation induced by inertial and aerodynamic loading - and limited in scale by the efficiency of their actuation method and the electronics required for autonomous flight (e.g., boost converters, microcontrollers, batteries, etc.). Thus, the development of novel actuation techniques addressing the need for scalability and use of low-power components would yield significant advancements to the field of bio-inspired robots. As such, a scalable low-power electromagnetic actuator configurable for a range of resonant frequencies was developed. From physics-based models capturing the principles of actuation, improvements to the electromagnetic coil shape and a reconfiguration of components were made to reduce weight and increases overall efficiency. Upon completion of a proof-of-concept prototype, multiple actuators were then integrated into a full-scale robot platform and validated through a series of free flight experiments. Design concepts and modeling techniques established by this study have since been used to develop subsequent platforms utilizing similar forms of actuation, advancing the state-of-art in bio-inspired robotics.</p><p>With the ability to make instantaneous changes in mid-flight orientation through subtle adjustments in angle-of-attack, the maneuverability of flying insects far exceeds that of any man-made aircraft. Yet, studies on insect flight have concluded that the rotation of insect wings is predominately passive. Coincidentally, bio-inspired flapping wing robots almost universally rely on passive rotational mechanisms to achieve desired angles-of-attack - a compromise between actuator mass and the controllable degrees-of-freedom that results in underactuated flight systems. For many platforms, the design of passive mechanisms regulating the rotational response of the wing is determined from either simulations of the wing dynamics or empirically derived data. While these approaches are able to predict the wing kinematics with surprising accuracy, they provide little insight into the effects that wing parameters have on the response or the aerodynamic forces produced. Yet, these models establish a means by which to both study insect flight physiology and explore new design principles for the development of bio-inspired robots. Using a recent model of the passively rotating insect wing aerodynamics, a novel design principle used to tune the compliance of bio-inspired robot wings is developed. Further, through the application of nonlinear analysis methods, parameters optimizing lift production in flapping wings is identified. Results from this analysis are then validated experimentally through tests preformed on miniature flapping wings with passive compliant hinges. This work provides new insight into the role passive rotational dynamics plays in insect flight and aids in the development future flapping wing robots.</p><div>Insect flight is remarkably robust, enabling myriad species to routinely endure adverse flow environments while undergoing common foraging activities and long-distance migratory flights. In contrast to the laminar (or smooth) flow conditions of high-altitude flights by commercial aircraft, insect flight occurs within the lower atmosphere where airflows are unsteady, and often turbulent. Yet despite the substantial challenge these conditions pose to an insect's physiology, flights spanning entire continents are common for numerous migratory species. To investigate how insects sustain stable flight under fluctuating flow conditions, the aerodynamic forces and flows produced by a dynamically scaled robotic insect wing immersed in a specially devised turbulence tank were examined. Despite variation in aerodynamic forces generated between wing strokes, results show that the averaged force from flapping remains remarkably steady under turbulent conditions. Furthermore, measurements of the flows induced by the wing demonstrated that unsteady aerodynamic forces generated by flying insects actively buffer against external flow fluctuations. These results provide mechanistic evidence that insect flight is resilient to turbulent conditions, and establishes principles that aid in the development of insect-inspired robots tailored for flight in adverse flow environments.<br></div></div></div></div></div>
13

Induced haltere movements reveal multisensory integration schema in <i>Drosophila</i>

Rauscher, Michael James 21 June 2021 (has links)
No description available.
14

Wing Damage Effect on Dragonfly’s Aerodynamic Performance during Takeoff

Gai, Kuo 29 May 2013 (has links)
No description available.
15

Vortex tilting and the enhancement of spanwise flow in flapping wing flight

Frank, Spencer 01 December 2011 (has links)
In summary the tilting mechanism helps to explain the overall flow structure and the stability of the leading edge vortex.; The leading edge vortex has been identified as the most critical flow structure for producing lift in flapping wing flight. Its stability depends on the transport of the entrained vorticity into the wake via spanwise flow. This study proposes a hypothesis for the generation and enhancement of spanwise flow based on the chordwise vorticity that results from the tilting of the leading edge vortex and trailing edge vortex. We investigate this phenomenon using dynamically scaled robotic model wings. Two different wing shapes, one rectangular and one based on Drosophila melanogaster (fruit fly), are submerged in a tank of mineral oil and driven in a flapping motion. Two separate kinematics, one of constant angular velocity and one of sinusoidal angular velocity are implemented. In order to visualize the flow structure, a novel three dimensional particle image velocimetry system is utilized. From the three dimensional information obtained the chordwise vorticity resulting from the vortex tilting is shown using isosurfaces and planar slices in the wake of the wing. It is observed that the largest spanwise flow is located in the area between the chordwise vorticity of the leading edge vortex and the chordwise vorticity of the trailing edge vortex, supporting the hypothesis that the vortex tilting enhances the spanwise flow. Additionally the LEV on the rectangular wing is found to detach at about 80% span as opposed to 60% span for the elliptical wing. Also, two distinct regions of spanwise flow, one at the base and one at the tip, are observed at the beginning of the sinusoidal kinematic, and as the velocity of the wing increases these two regions unionize into one. Lastly, the general distribution of vorticity around each wing is found to be nearly the same, indicating that different wing shapes do not greatly affect the distribution of vorticity nor stability mechanisms in flapping flight.
16

Visualization of Complex Unsteady 3D Flow: Flowing Seed Points and Dynamically Evolving Seed Curves with Applications to Vortex Visualization in CFD Simulations of Ultra Low Reynolds Number Insect Flight

Koehler, Christopher M. 13 December 2010 (has links)
No description available.
17

Computational Investigation of a Hinge-connected Hovering Plate

Gaston, Zachary Robert January 2012 (has links)
No description available.
18

Dynamic Mechanical Properties of Resilin

King, Raymond John 06 July 2010 (has links)
Resilin is an almost perfect elastic protein found in many insects. It can be stretched up to 300% of its resting length and is not affected by creep or stress relaxation. While much is known about the static mechanical properties of resilin, it is most often used dynamically by insects. Unfortunately, the dynamic mechanical properties of resilin over the biologically relevant frequency range are unknown. Here, nearly pure samples of resilin were obtained from the dragonfly, Libellua luctuosa, and dynamic mechanical analysis was performed with a combination of time-temperature and time-concentration superposition to push resilin through its glass transition. The tensile properties for resilin were found over five different ethanol concentrations (65, 70, 82, 86 and 90% by volume in water) between temperatures of -5°C and 60°C, allowing for the quantification of resilin's dynamic mechanical properties over the entire master curve. The glass transition frequency of resilin in water at 22°C was found to be 106.3 Hz. The rubber storage modulus was 1.6 MPa, increasing to 30 MPa in the glassy state. At 50 Hz and 35% strain over 98% of the elastic strain energy can returned each cycle, decreasing to 81% at the highest frequencies used by insects (13 kHz). However, despite its remarkable ability to store and return energy, the resilin tendon in dragonflies does not act to improve the energetic efficiency of flight or as a power amplifying spring. Rather, it likely functions to passively control and stabilize the trailing edge of each wing during flight. / Master of Science
19

Discovering the Complex Aerodynamics of Flapping Flight with Bio-kinematics Using Boltzmann and Eulerian Methods

Feaster, Jeffrey Oden 31 August 2017 (has links)
The cross-sectional geometry of an insect wing has historically been simplified to a rectangular, elliptic, or having a streamlined airfoil shape. Up until this point, no analysis has utilized a morphologically accurate insect wing. As such, there remains significant questions as to whether or not there are aerodynamic benefits to the wing vein structure accompanying the already known structural improvements. The present study uses a bumblebee specimen (Bombus pensylvanicus) acquired by the author, scanned using a skyscan microCT scanner, and post-processed for computational analysis. The resulting geometry captures the naturally occurring vein structures present in the bee wing and is used to better understand aerodynamic effects of biological corrugation. The aerodynamics associated with a morphologically accurate bee wing geometry are explored in two and three dimensions for the first time. Multiple methodologies are validated with experimental results presented in the literature to capture the fluid dynamics in two dimensions including the Lattice-Boltzmann method and unstructured dynamic remeshing using a Navier-Stokes approach. The effects of wing cross-section are compared first with common geometries used in the literature in two dimensions and then between cross-sections extracted at different locations along the wing span. A three-dimensional methodology is validated and used to compare the true bee wing with one using a rectangular cross-section in symmetric hovering. The influence of spanwise cross-section is revisited in three dimensions and compared to the results found in two-dimensions for the same kinematics in forward flight. The final focus of the dissertation is the first simulation of a morphologically accurate wing using kinematics described in the literature. / PHD
20

Numerical modeling of fluid-structure interaction in bio-inspired propulsion

Engels, Thomas 10 December 2015 (has links)
Les animaux volants et flottants ont développé des façons efficaces de produire l'écoulement de fluide qui génère les forces désirées pour leur locomotion. Cette thèse est placée dans ce contexte interdisciplinaire et utilise des simulations numériques pour étudier ces problèmes d'interaction fluides-structure, et les applique au vol des insectes et à la nage des poissons. Basée sur les travaux existants sur les obstacles mobiles rigides, une méthode numérique a été développée, permettant également la simulation des obstacles déformables et fournissant une polyvalence et précision accrues dans le cas des obstacles rigides. Nous appliquons cette méthode d'abord aux insectes avec des ailes rigides, où le corps et d'autres détails, tels que les pattes et les antennes, peuvent être inclus. Après la présentation de tests de validation détaillée, nous procédons à l'étude d'un modèle de bourdon dans un écoulement turbulent pleinement développé. Nos simulations montrent que les perturbations turbulentes affectent les insectes volants d'une manière différente de celle des avions aux ailes fixées et conçues par l'humain. Dans le cas de ces derniers, des perturbations en amont peuvent déclencher des transitions dans la couche limite, tandis que les premiers ne présentent pas de changements systématiques dans les forces aérodynamiques. Nous concluons que les insectes se trouvent plutôt confrontés à des problèmes de contrôle dans un environnement turbulent qu'à une détérioration de la production de force. Lors de l‘étape suivante, nous concevons un modèle solide, basé sur une équation de barre monodimensionnelle, et nous passons à la simulation des systèmes couplés fluide–structure. / Flying and swimming animals have developed efficient ways to produce the fluid flow that generates the desired forces for their locomotion. These bio-inspired problems couple fluid dynamics and solid mechanics with complex geometries and kinematics. The present thesis is placed in this interdisciplinary context and uses numerical simulations to study these fluid--structure interaction problems with applications in insect flight and swimming fish. Based on existing work on rigid moving obstacles, using an efficient Fourier discretization, a numerical method has been developed, which allows the simulation of flexible, deforming obstacles as well, and provides enhanced versatility and accuracy in the case of rigid obstacles. The method relies on the volume penalization method and the fluid discretization is still based on a Fourier discretization. We first apply this method to insects with rigid wings, where the body and other details, such as the legs and antennae, can be included. After presenting detailed validation tests, we proceed to studying a bumblebee model in fully developed turbulent flow. Our simulations show that turbulent perturbations affect flapping insects in a different way than human-designed fixed-wing aircrafts. While in the latter, upstream perturbations can cause transitions in the boundary layer, the former do not present systematical changes in aerodynamic forces. We conclude that insects rather face control problems in a turbulent environment than a deterioration in force production. In the next step, we design a solid model, based on a one--dimensional beam equation, and simulate coupled fluid--solid systems.

Page generated in 0.0571 seconds