• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study on the application technology of the sterile insect technique, with focus on false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of citrus in South Africa

Nepgen, Eugene Stephan January 2014 (has links)
False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is considered the most important indigenous pest of citrus in southern Africa. Major concerns such as progressive insecticidal resistance, the negative impact of insecticides on the environment, as well as the influence of consumers opposed to chemical residues on fruit, created opportunities for biological control methods such as Sterile Insect Technology (SIT). This technology is now established in the Western and Eastern Cape provinces of South Africa as an effective, sustainable alternative to conventional FCM control methods. Due to the prevalence of the pest in all citrus producing areas of South Africa, potential for SIT to expand is enormous. Success of an SIT programme is highly dependent on efficient application of the technology to achieve its objectives in a timeous manner. The aim of this study was to advance the application of SIT for control of FCM on citrus in South Africa, by investigating the effect of certain critical stages in the process. The effect of long-distance transportation on fitness of irradiated FCM was determined, showing reduced performance with cold-immobilized transport. A significant decrease in flight ability and longevity of irradiated FCM was found, although critically, realized fecundity was not affected. The effect of two different insecticides in the pyrethroid and organophosphate chemical groups were investigated for their residual effect on mortality of released irradiated FCM, to determine if these pest control programmes could be integrated. Both chlorpyrifos and tau-fluvalinate were effective in killing irradiated FCM for a number of days after application, after which degradation of the active ingredient rendered it harmless. This effect was found to be similar for irradiated and non-irradiated males, consequently ratios of sterile : wild male FCM should be retained regardless of whether sprays are applied or not. The modes for release of sterile FCM in an SIT programme were investigated. Efficacy of ground and aerial release platforms were tested by evaluating the recovery of released irradiated male FCM in these orchards. More irradiated FCM were recovered in orchards released from the ground compared to air. However, an economic analysis of both methods shows application of irradiated insects over a large geographical area is more cost-effective by air. Depending on the terrain and size of the target area, a combination of both methods is ideal for application of SIT for control of FCM in citrus. Development of application technology for advance of the programme is discussed and recommendations for future research and development are offered.
2

Dispersal of sterile false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), for a sterile insect technique programme on citrus

Wagenaar, Gideon Daniel January 2015 (has links)
The false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is an important pest of citrus in South Africa and challenging to manage due to its inconspicuous nature. An effective method currently being employed for the area-wide suppression of the FCM is the Sterile Insect Technique (SIT) and the effective dispersal of sterile moths is very important for success with SIT. This study was conducted in the Addo area of the Sundays River Valley (Eastern Cape) where the programme is commercially used. In this study, sterile male moths were released in different orchards on a citrus farm, and in nearby veld at different times of the year, and their dispersal was monitored through the use of pheromone traps. Various climatic factors were monitored. This provided insight into the local dispersal of sterile male FCM adults in response to abiotic cues (particularly climatic factors). The movement of the FCM in four citrus cultivars, namely lemons, navel and Valencia oranges and mandarins and in the nearby veld (open field), was determined at six different stages of the year. Results clearly indicated that sterile FCM movement is concentrated within citrus orchards, as very few moths were trapped beyond 30 m from the release point, particularly in navel and Valencia orchards. Of the climatic factors measured, minimum and maximum temperatures had the most significant influence on FCM dispersal, and based on the results, various recommendations are made for the releases of sterile FCM in an area-wide SIT management programmes on citrus. A better understanding of the dispersal capabilities of the FCM in an agricultural system, under different conditions and at different times of the year, is invaluable not only in improving release strategies in an SIT programme but in planning future control strategies against the FCM.
3

Die insekplaagkompleks op sitrus te Vaalharts

Mathewson, Johanna 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2000. / Full text to be digitised and attached to bibliographic record. / ENGLISH ABSTRACT: The cultivation of citrus in the Vaalharts region is a fairly recent development. With the introduction of this crop, an insect pest complex has also developed in this region. The presence of these pests was studied in eleven orchards, planted with three citrus cultivars and of varying ages, distributed in the 300 square kilometer cultivation area. Each orchard was inspected for the presence of pests by making use of two weekly sampling techniques. Ten of the most important insect pests of citrus in the Vaalharts region are briefly described by refering to their general appearance, life cycles, feeding and pest status and economic threshold. For every pest various control options, including operational systems, crop cultivation, biological and chemical control, are discussed and, where applicable, illustrated by means of graphic presentations. The seasonal presence of the cirtrus pests in the Vaalharts region is tabulated and discussed individually. With these details as background, an insect pest management programme for citrus in the Vaalharts region is compiled. / AFRIKAANSE OPSOMMING: Die verbouing van sitrus in die Vaalhartsgebied is 'n redelik onlangse ontwikkeling. Gepaard met die nuwe gewas het daar ook 'n insekplaagkompleks in die gebied ontstaan. Die voorkoms van die plae is in elt .boorde, beplant met drie sitruskultivars en van verskillende ouderdomme, verspreid in die 300 vierkante kilometer verbouingsareaal, bestudeer. Elk van die boorde is weekliks ondersoek vir die aanwesigheid van plae deur van twee moniteringstegnieke gebruik te maak. Die tien belangrikste insekplae van sitrus in die Vaalhartsgebied word kortliks beskryf deur na hulle algemene voorkoms, lewenssiklus, voeding en plaagstatus en ekonomiese drempelwaardes asook die moniteringsmetodes wat gebruik is, te verwys. Vir elke plaag word beheeropsies, wat operasionele stelsels, gewasverbouing, bloloqlese en chemiese beheer insluit, bespreek wat, waar toepaslik, aan die hand van grafiese voorstellings gemustreer word. Die seisoenale aanwesigheid van die sitrusplae word in 'n tabel aangedui en individueel bespreek. Met die gegewens as agtergrond is 'n insekplaagbestuurprogram vir sitrus in die Vaalhartsgebied opgestel.
4

Source and identity of insect contaminants in export consignments of table grapes

Pryke, James Stephen 03 1900 (has links)
Thesis (MScAgric (Conservation Ecology and Entomology)--University of Stellenbosch, 2005. / The South African table grape industry exports approximately 60% of the table grapes produced. A major threat to the export of these grapes is the phytosanitary risk that insect pests pose. This study was conducted in the Hex River Valley, South Africa’s main table grape producing area. The aim of this study was to reduce the number of phytosanitary rejections from insects on table grapes from the Hex River Valley. Thus the main objectives of the study were to identify the most important phytosanitary pests in the Hex River Valley; the determination of their presence in the vineyards with possible means to control them; and to assess the possibility of using postharvest quarantine treatments in the Western Cape. Further aims were to determine the effect of different colour harvesting crates on the phytosanitary pests and whether the phytosanitary pests infested the grapes via packhouses. The most important phytosanitary pests of table grapes of the Hex River Valley are in order of importance: Phlyctinus callosus (Schonherr) (Coleoptera: Curculionidae), Epichoristodes acerbella Walker (Lepidoptera: Tortricidae), Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), Gonocephalum simplex Fabricius (Coleoptera: Tenebrionidae) and Dysdercus fasciatus Signoret (Hemiptera: Pyrrhocoridae). 12.71% of rejections were from species that were not identified, while a further 33% of the rejections were possibly identified incorrectly. Phytosanitary control of P. callosus appeared to be far more effective using Plantex® than pesticides. Weather conditions appeared to affect the abundance of P. callosus, especially warm weather, while bunches harboured less P. callosus later in the day. Control of E. acerbella with DiPel® (Bacillus thuringiensis var. kurstaki) appeared to at least reduce the population within the vineyards, and so its use is recommended. P. ficus is a non-actionable species for the USA market and is not listed as a phytosanitary pest for the Israeli market and so should not be causing any phytosanitary rejections. C. capitata appeared to be successfully controlled by the fruit fly sterile release program and the cold sterilisation it currently undergoes. G. simplex caused few rejections. It is still unclear where this pest infests the grapes, as it was found in both the field and in the packhouses. D. fasciatus occurrence on grapes was probably accidental. It was shown that picking during the early and late parts of the day, when this species was less active, reduced its occurrence in bunches. Gryllus bimaculatus (De Geer) (Orthoptera: Gryllidae), although not reported as a reason for rejections in table grapes for the past two years, was an actionable species that was present in large numbers in the Hex River Valley. There was a strong correlation between increasing quantities of pesticides and higher abundances of G. bimaculatus. It appeared to be an indicator of the overuse of pesticides. Results of this study showed that infestation by the phytosanitary pests came from neighbouring vineyards. The creation of barriers to prevent the movement of these pests between vineyards is suggested. Methyl bromide is the most commonly used postharvest quarantine treatment. Owing to the ozone-depleting properties of methyl bromide, it is scheduled to be outlawed in many countries from 2005. Alternative postharvest treatments are irradiation, extreme temperatures, forced air, vapour-heat treatments and the use of controlled atmospheres. Irradiation treatments appeared to control the pests at doses that do not damage the grapes. Controlled atmosphere treatments also have a high probability of success, although more research is required on this treatment. Low temperature treatments are relatively cheap as most exported fruit already undergoes cold storage, and appears to control species in the families Pseudococcidae and Tephritidae, although further research is required for the other pest. Colour or location of the harvesting crates in the vineyards appeared not to influence the number of phytosanitary pests collected, as they were not attracted to these crates.

Page generated in 0.108 seconds