• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neuropeptides in the brain of \(Cataglyphis\) \(nodus\) ants and their role as potential modulators of behavior / Neuropeptide im Gehirn von \(Cataglyphis\) \(nodus\) Ameisen und ihre Rolle als potenzielle Modulatoren von Verhalten

Habenstein, Jens January 2021 (has links) (PDF)
An adequate task allocation among colony members is of particular importance in large insect societies. Some species exhibit distinct polymorphic worker classes which are responsible for a specific range of tasks. However, much more often the behavior of the workers is related to the age of the individual. Ants of the genus Cataglyphis (Foerster 1850) undergo a marked age-related polyethism with three distinct behavioral stages. Newly emerged ants (callows) remain more or less motionless in the nest for the first day. The ants subsequently fulfill different tasks inside the darkness of the nest for up to four weeks (interior workers) before they finally leave the nest to collect food for the colony (foragers). This thesis focuses on the neuronal substrate underlying the temporal polyethism in Cataglyphis nodus ants by addressing following major objectives: (1) Investigating the structures and neuronal circuitries of the Cataglyphis brain to understand potential effects of neuromodulators in specific brain neuropils. (2) Identification and localization of neuropeptides in the Cataglyphis brain. (3) Examining the expression of suitable neuropeptide candidates during behavioral maturation of Cataglyphis workers. The brain provides the fundament for the control of the behavioral output of an insect. Although the importance of the central nervous system is known beyond doubt, the functional significance of large areas of the insect brain are not completely understood. In Cataglyphis ants, previous studies focused almost exclusively on major neuropils while large proportions of the central protocerebrum have been often disregarded due to the lack of clear boundaries. Therefore, I reconstructed a three-dimensional Cataglyphis brain employing confocal laser scanning microscopy. To visualize synapsin-rich neuropils and fiber tracts, a combination of fluorescently labeled antibodies, phalloidin (a cyclic peptide binding to filamentous actin) and anterograde tracers was used. Based on the unified nomenclature for insect brains, I defined traceable criteria for the demarcation of individual neuropils. The resulting three-dimensional brain atlas provides information about 33 distinct synapse-rich neuropils and 30 fiber tracts, including a comprehensive description of the olfactory and visual tracts in the Cataglyphis brain. This three-dimensional brain atlas further allows to assign present neuromodulators to individual brain neuropils. Neuropeptides represent the largest group of neuromodulators in the central nervous system of insects. They regulate important physiological and behavioral processes and have therefore recently been associated with the regulation of the temporal polyethism in social insects. To date, the knowledge of neuropeptides in Cataglyphis ants has been mainly derived from neuropeptidomic data of Camponotus floridanus ants and only a few neuropeptides have been characterized in Cataglyphis. Therefore, I performed a comprehensive transcriptome analysis in Cataglyphis nodus ants and identified peptides by using Q-Exactive Orbitrap mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. This resulted in the characterization of 71 peptides encoded on 49 prepropeptide genes, including a novel neuropeptide-like gene (fliktin). In addition, high-resolution MALDI-TOF MS imaging (MALDI-MSI) was applied for the first time in an ant brain to localize peptides on thin brain cryosections. Employing MALDI-MSI, I was able to visualize the spatial distribution of 35 peptides encoded on 16 genes. To investigate the role of neuropeptides during behavioral maturation, I selected suitable neuropeptide candidates and analyzed their spatial distributions and expression levels following major behavioral transitions. Based on recent studies, I suggested the neuropeptides allatostatin-A (Ast-A), corazonin (Crz) and tachykinin (TK) as potential regulators of the temporal polyethism. The peptidergic neurons were visualized in the brain of C. nodus ants using immunohistochemistry. Independent of the behavioral stages, numerous Ast-A- and TK-immunoreactive (-ir) neurons innervate important high-order integration centers and sensory input regions with cell bodies dispersed all across the cell body rind. In contrast, only four corazonergic neurons per hemisphere were found in the Cataglyphis brain. Their somata are localized in the pars lateralis with axons projecting to the medial protocerebrum and the retrocerebral complex. Number and branching patterns of the Crz-ir neurons were similar across behavioral stages, however, the volume of the cell bodies was significantly larger in foragers than in the preceding behavioral stages. In addition, quantitative PCR analyses displayed increased Crz and Ast-A mRNA levels in foragers, suggesting a concomitant increase of the peptide levels. The task-specific expression of Crz and Ast-A along with the presence in important sensory input regions, high-order integration center, and the neurohormonal organs indicate a sustaining role of the neuropeptides during behavioral maturation of Cataglyphis workers. The present thesis contains a comprehensive reference work for the brain anatomy and the neuropeptidome of Cataglyphis ants. I further demonstrated that neuropeptides are suitable modulators for the temporal polyethism of Cataglyphis workers. The complete dataset provides a solid framework for future neuroethological studies in Cataglyphis ants as well as for comparative studies on insects. This may help to improve our understanding of the functionality of individual brain neuropils and the role of neuropeptides, particularly during behavioral maturation in social insects. / Eine adäquate Aufgabenverteilung unter den Koloniemitgliedern ist in großen Insektengesellschaften von besonderer Bedeutung. Einige Arten weisen polymorphe Arbeiterklassen auf, die jeweils für einen bestimmten Aufgabenbereich zuständig sind. Viel häufiger jedoch steht das Verhalten der Arbeiterinnen im Zusammenhang mit dem Alter der Individuen. Ameisen der Gattung Cataglyphis (Foerster 1850) weisen einen ausgeprägten alterskorrelierten Polyethismus auf, der sich durch drei unterschiedliche Verhaltensstadien kennzeichnet. Neu geschlüpfte Ameisen (Callows) verharren den ersten Tag mehr oder weniger bewegungslos im Nest. Anschließend erfüllen die Ameisen in der Dunkelheit des Nestes bis zu vier Wochen lang verschiedene Aufgaben (Interior), bevor sie schließlich das Nest verlassen, um Nahrung für die Kolonie zu sammeln (Forager). Diese Arbeit konzentriert sich auf die neuronalen Grundlagen, die dem alterskorrelierten Polyethismus bei Cataglyphis nodus Ameisen zugrunde liegt, indem folgende Hauptziele verfolgt werden: (1) Untersuchung der Strukturen und der neuronalen Schaltkreise des Cataglyphis-Gehirns, um mögliche Effekte von Neuromodulatoren in spezifischen Hirnneuropilen besser zu verstehen. (2) Identifizierung und Lokalisierung von Neuropeptiden im Gehirn von Cataglyphis Ameisen. (3) Untersuchung der Expression geeigneter Neuropeptid-Kandidaten im Zuge der Verhaltensreifung von Cataglyphis Arbeitern. Das Gehirn bildet die Grundlage für die Steuerung des Verhaltens von Insekten. Obwohl die tragende Rolle des zentralen Nervensystems für das Verhalten zweifelsfrei bekannt ist, sind die funktionellen Aufgaben großer Bereiche des Insektengehirns nicht vollständig erforscht. Bei Cataglyphis Ameisen konzentrierten sich vorangegangene Studien fast ausschließlich auf die Hauptneuropile, während große Teile des zentralen Protocerebrums mangels klarer Abgrenzungen weitgehend unberücksichtigt geblieben sind. Daher habe ich ein dreidimensionales Cataglyphis-Gehirn mit Hilfe der konfokalen Laser-Scanning-Mikroskopie rekonstruiert. Um die synapsinreichen Neuropile und Nerventrakte zu visualisieren, wurde eine Kombination aus fluoreszenzgekoppelten Antikörpern, Phalloidin (ein zyklisches Peptid, das an filamentöses Aktin bindet) und anterograden Tracern verwendet. Basierend auf der einheitlichen Nomenklatur für Insektengehirne definierte ich nachvollziehbare Kriterien für die Abgrenzung der einzelnen Neuropile. Die resultierende dreidimensionale neuronale Karte liefert Informationen über 33 verschiedene synapsinreiche Neuropile und 30 Nerventrakte, einschließlich einer umfassenden Beschreibung der olfaktorischen und visuellen Trakte im Cataglyphis-Gehirn. Dieser dreidimensionale Hirnatlas erlaubt es darüber hinaus, die vorhandenen Neuromodulatoren einzelnen Neuropilen des Gehirns zuzuordnen. Neuropeptide stellen die umfangreichste Gruppe an Neuromodulatoren im zentralen Nervensystem von Insekten dar. Sie regulieren wichtige physiologische Prozesse und Verhaltensweisen und wurden deshalb in jüngerer Vergangenheit mit der Regulation des alterskorrelierenden Polyethismus bei sozialen Insekten in Verbindung gebracht. Bislang wurde das Wissen über Neuropeptide bei Cataglyphis Ameisen hauptsächlich aus neuropeptidomischen Daten von Camponotus floridanus Ameisen abgeleitet und nur wenige Neuropeptide wurden bei Cataglyphis charakterisiert. Daher führte ich eine umfassende Transkriptomanalyse bei Cataglyphis nodus Ameisen durch und identifizierte Peptide mit Hilfe der Q-Exactive Orbitrap Massenspektrometrie (MS) und der Matrix-assistierte Laser Desorption-Ionisierung Time-of-Flight (MALDI-TOF) MS. Hierdurch konnten insgesamt 71 Peptide charakterisiert werden, die auf 49 Präpropeptid-Genen kodiert sind, einschließlich eines neuartigen Neuropeptid-ähnlichen Gens (Fliktin). Darüber hinaus wurde das hochauflösende MALDI-TOF MS-Imaging (MALDI-MSI) zum ersten Mal in einem Ameisenhirn angewandt, um Peptide auf dünnen Hirnkryoschnitten zu lokalisieren. Mittels MALDI-MSI konnte ich die räumliche Verteilung von 35 Peptiden sichtbar machen, die auf 16 Genen kodiert sind. Um die Rolle der Neuropeptide während der Verhaltensreifung zu untersuchen, wählte ich geeignete Neuropeptid-Kandidaten aus und analysierte deren räumliche Verteilung und Expressionsniveaus im Zuge wichtiger Verhaltensübergänge. Basierend auf aktuellen Studien schlug ich die Neuropeptide Allatostatin-A (Ast-A), Corazonin (Crz) und Tachykinin (TK) als mögliche Regulatoren des alterskorrelierenden Polyethismus vor. Die peptidergen Neurone wurden im Gehirn von C. nodus Ameisen mittels Immunhistochemie sichtbar gemacht. Unabhängig von den Verhaltensstadien innervieren die zahlreichen Ast-A- und TK-immunreaktiven (-ir) Neuronen wichtige Integrationszentren höherer Ordnung sowie sensorische Eingangsregionen, während ihre Zellkörper über die gesamte Zellkörperschicht verteilt sind. Im Gegensatz dazu wurden im Cataglyphis-Gehirn nur vier corazonerge Neuronen pro Hemisphäre gefunden. Ihre Somata sind in der Pars lateralis lokalisiert, deren Axone in das mediale Protocerebrum und den retrozerebralen Komplex projizieren. Anzahl und Verzweigungsmuster der Crz-ir Neuronen waren in allen Verhaltensstadien ähnlich, jedoch war das Volumen der Zellkörper bei Foragern signifikant größer als in den vorangegangenen Verhaltensstadien. Darüber hinaus zeigten quantitative PCR Analysen erhöhte Crz- und Ast-A mRNA-Level in Foragern, was auf einen gleichzeitigen Anstieg der Peptidspiegel schließen lässt. Die aufgabenspezifische Expression von Crz und Ast-A sowie deren Präsenz in wichtigen sensorischen Eingangsbereichen, Integrationszentren höherer Ordnung und den neurohormonellen Organen weisen auf eine tragende Rolle der Neuropeptide während der Verhaltensreifung von Cataglyphis Arbeiterinnen hin. Die vorliegende Arbeit beinhaltet ein umfassendes Nachschlagewerk für die Hirnanatomie und das Neuropeptidom von Cataglyphis Ameisen. Zudem konnte ich demonstrieren, dass Neuropeptide geeignete Modulatoren für den alterskorrelierenden Polyethismus von Cataglyphis Arbeitern sind. Der komplette Datensatz bietet eine solide Grundlage für zukünftige, neuroethologische Studien an Cataglyphis Ameisen sowie vergleichenden Studien in Insekten. Hierdurch kann unser Verständnis über die Funktionalität einzelner Hirnneuropile und die Rolle von Neuropeptiden, insbesondere während der Verhaltensreifung sozialer Insekten, in Zukunft verbessert werden.

Page generated in 0.0646 seconds