Spelling suggestions: "subject:"instability modes"" "subject:"instability codes""
1 |
Data Analysis of an Unsteady Cavitating Flow on a Venturi-type ProfileNemati Kourabbasloo, Navid 01 December 2021 (has links)
The instability modes and non-linear behavior of a cavitating flow have been studied based on the experimental data obtained from planar Particle Image Velocimetry (PIV). Three data-driven techniques, Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD), and Clustered-based Reduced Order Modeling (CROM), are applied to the snapshots of the fluctuating component of velocity to investigate instability modes of the cavitating flow. DMD and POD analysis yield multiple modes are corresponding to slow-varying drift flow, cloud-shedding, and Kelvin-Helmholtz (KH) instability for a fixed inlet flow condition. The high coherence measure obtained from the instabilities suggests a transfer of energy from the largest scales, fluctuating mean flow, to the smaller scales such as cloud cavitation and Kelvin-Helmholtz (KH) instability. It is demonstrated that the POD decorrelation of length scales yields inherently quasi-periodic time dynamics, e.g., incommensurate frequencies. Moreover, the eigenvalue obtained from DMD revealed multiple harmonic with different decay rates associated with the cloud cavitation. The above-mentioned intermittent transition between distinct cloud shedding regimes is investigated via Clustered-based Reduced Order Modeling (CROM). Four aperiodic shedding regimes are identified. 68% of the time, triplets of vortices are formed, while 28% of the time, a pair of vortices are formed in the near wake of the throat. Dominant mechanisms governing the momentum transport and the turbulence kinetic energy production, destruction, and redistribution in distinct regions of the flow field have been identified using Gaussian Mixture Models (GMMs). The preceding data-driven techniques and in-depth analysis of the results facilitated modeling of the cavitation inception and break-up. Accordingly, a phase transition field model is developed using the ultra-fast Time-Resolved Particle Image Velocimetry (TR-PIV) and vapor void fraction spatial and temporal data. The data acquisition is implemented in a Venturi-type test section. The approximate Reynolds number based upon the throat height is 10,000, and the approximate cavitation number is 1.95. The non-equilibrium cavitation model assumes that the phase production and destruction are correlated to the static pressure field, pressure spatial derivatives, void fraction, and divergence of the velocity field. Finally, the dependence of the model on the empirical constants has been investigated. / Doctor of Philosophy / A cavitation bubble occurs where the pressure field is below the saturation pressure of the liquid. Accumulation of the cavitation bubble forms a cavitating flow. This phenomenon is observed in pumps, propulsion systems, internal combustion engines, and rocket engines. Identifying the mechanisms leading to cavitation-induced damages is imperative in the design of the devices. In this regard, investigation of the cavitation bubble inception, deformation, collapse, and intermittent regime change is mandatory in learning the primary mechanisms of the stresses imposed on the device. Experiments and high-fidelity numerical and analytical methods can be employed to shed light on flow physics. The current study adopted joint experimental methods, data analysis techniques, and computational approaches to scrutinize the unsteady cavitating flow underlying physics as it occurs past the throat of a Venturi-type profile. Different mechanisms of instabilities are identified by applying the data-driven techniques to the raw images of the cavitating flow. The path of the transitions between physically different instabilities mechanisms is examined. The local dominant balance between stress terms in the conservation of momentum equation is identified, and the stress terms roles in cavitating flow instabilities and advective acceleration are determined. A new cavitation model is developed and validated against the experimental results. The new model improves the prediction of the void fraction in different regions of the flow field, making it feasible to simulate different regimes of cavitating flow. Finally, the dominant mechanism governing the liquid-vapor transition and the transport of the void fraction is described.
|
2 |
Réponse d'un jet rond subsonique à une excitation fluidique stationnaire et instationnaire / Response of a subsonic round jet to steady and unsteady fluidic actuationMaury, Rémy 25 October 2012 (has links)
Ce travail tente d'analyser la réponse d'une jet axisymétrique turbulent à une excitation fluidique stationnaire et instationnaire lorsque le contenu fréquentiel et aziumutal (!,m) de la perturbation est maîtrisé. Le dispositif de contrôle utilisé est composé de 16 microjets ronds répartis sur le bord de fuite de la tuyère. L'utilisation des microjets provoque une réduction du champ acoustique rayonné (particulièrement pour le cas de contrôle stationnaire). Le champ aérodynamique est ensuite sondé grâce à des mesures fil chaud et PIV stéréoscopique résolue en temps. L'excitation instationnaire permet d'utiliser les moyennes de phase afin d'effectuer une décomposition triple du champ de vitesse. L'étude de la composante cyclique de la “réponse du jet” montre une synchronisation spatio-temporelle importante sur une grande étendue spatiale. En d'autres mots, le forçage a une grande autorité déterministe sur l'écoulement. De plus, la comparaison de la composante cyclique de la réponse du jet avec la théorie de la stabilité linéaire indique qu'il existe des ondes d'instabilité hydrodynamique au sein du jet. L'analyse du jet contrôlé par injection fluidique stationnaire montre ensuite comment l'effet du contrôle peut être expliqué par la déformation du champ moyen conduisant à la réduction du taux de croissance des ondes d'instabilité dans le jet. Cette déformation est dûe à l'introduction d'un couple de paramètre (nombre d'onde/fréquences) pour lequel le champ moyen de l'écoulement est stable. La réponse du jet étant turbulente, cela implique que les tensions de Reynolds déforment le champ moyen de manière à ce que les modes les plus instables aient des taux de croissance plus faibles. / This work investigates the response of an axisymetric turbulent jet to steady and unsteady fluidic florcing where the azimuthal wavenumber-frequency (!,m) content of the perturbation is well known. The control setup is composed of 16 round microjets azimutally distributed around the nozzle lip. Such actuation can lead to a decrease in the acoustic energy radiated by the jet (especially for the steady case). The aerodynamic fied is investigated using hotwire measurements and time-resolved stereoscopic PIV. Using the unsteady forcing, phase-averaging is possible, and this allows the implementation of a triple decomposition of the measurements. Examination of the cyclic component of the flow response shows that a non-negligible phase-locked fluctuation is obtained over a large spatial extent, in other words, the actuation has good deterministic control authority over the flow. Furthermore, comparison of the cyclic component of the flow response with Linear Stability Theory supports the idea that the jet response comprises linear hydrodynamic instability waves. Subsequent analysis of jets controlled by steady fluidic actuation shows how the control effect can be explained by a mean-flow modification that leads to the reduction of instability-wave growth rates ; the mean flow modification is argued to be due to the introduction of azimuthal wavenumber-frequency pairs to which the mean flow is stable. The response is therefore turbulent, and involves Reynolds stresses which deform the mean-field such that the most unstable modes have lower growth rates.
|
Page generated in 0.0808 seconds