• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PGNME: A Domain Decomposition Algorithm for Distributed Power System Dynamic Simulation on High Performance Computing Platforms

Sullivan, Brian Shane 12 August 2016 (has links)
Dynamic simulation of a large-scale electric power system involves solving a large number of differential algebraic equations (DAEs) every simulation time-step. With the ever-growing size and complexity of power grid, dynamic simulation becomes more and more time-consuming and computationally difficult using conventional sequential simulation techniques. This thesis presents a fully distributed approach intended for implementation on High Performance Computer (HPC) clusters. A novel, relaxation-based domain decomposition algorithm known as Parallel-General-Norton with Multiple-port Equivalent (PGNME) is proposed as the core technique of a two-stage decomposition approach to divide the overall dynamic simulation problem into a set of sub problems that can be solved concurrently. While the convergence property has traditionally been a concern for relaxation-based decomposition, an estimation mechanism based on multiple-port network equivalent is adopted as the preconditioner to enhance the convergence of the proposed algorithm. The algorithm is presented in detail and validated both in terms of accuracy and capability
2

Acceleration of Transient Stability Simulation for Large-Scale Power Systems on Parallel and Distributed Hardware

Jalili-Marandi, Vahid 11 1900 (has links)
Transient stability analysis is necessary for the planning, operation, and control of power systems. However, its mathematical modeling and time-domain solution is computationally onerous and has attracted the attention of power systems experts and simulation specialists for decades. The ultimate promised goal has been always to perform this simulation as fast as real-time for realistic-sized systems. In this thesis, methods to speedup transient stability simulation for large-scale power systems are investigated. The research reported in this thesis can be divided into two parts. First, real-time simulation on a general-purpose simulator composed of CPU-based computational nodes is considered. A novel approach called Instantaneous Relaxation (IR) is proposed for the real-time transient stability simulation on such a simulator. The motivation of proposing this technique comes from the inherent parallelism that exists in the transient stability problem that allows to have a coarse grain decomposition of resulting system equations. Comparison of the real-time results with the off-line results shows both the accuracy and efficiency of the proposed method. In the second part of this thesis, Graphics Processing Units (GPUs) are used for the first time for the transient stability simulation of power systems. Data-parallel programming techniques are used on the single-instruction multiple-date (SIMD) architecture of the GPU to implement the transient stability simulations. Several test cases of varying sizes are used to investigate the GPU-based simulation. The simulation results reveal the obvious advantage of using GPUs instead of CPUs for large-scale problems. In the continuation of part two of this thesis the application of multiple GPUs running in parallel is investigated. Two different parallel processing based techniques are implemented: the IR method, and the incomplete LU factorization based approach. Practical information is provided on how to use multi-threaded programming to manage multiple GPUs running simultaneously for the implementation of the transient stability simulation. The implementation of the IR method on multiple GPUs is the intersection of data parallelism and program-level parallelism, which makes possible the simulation of very large-scale systems with 7020 buses and 1800 synchronous generators. / Energy Systems
3

Acceleration of Transient Stability Simulation for Large-Scale Power Systems on Parallel and Distributed Hardware

Jalili-Marandi, Vahid Unknown Date
No description available.

Page generated in 0.0971 seconds