Spelling suggestions: "subject:"instantaneous frequency estimation"" "subject:"instantaneousa frequency estimation""
1 |
Time-Varying Signal Models : Envelope And Frequency Estimation With Application To Speech And Music Signal CompressionChandra Sekhar, S January 2005 (has links) (PDF)
No description available.
|
2 |
Implementation of Instantaneous Frequency Estimation based on Time-Varying AR ModelingKadanna Pally, Roshin 27 May 2009 (has links)
Instantaneous Frequency (IF) estimation based on time-varying autoregressive (TVAR) modeling has been shown to perform well in practical scenarios when the IF variation is rapid and/or non-linear and only short data records are available for modeling. A challenging aspect of implementing IF estimation based on TVAR modeling is the efficient computation of the time-varying coefficients by solving a set of linear equations referred to as the generalized covariance equations. Conventional approaches such as Gaussian elimination or direct matrix inversion are computationally inefficient for solving such a system of equations especially when the covariance matrix has a high order.
We implement two recursive algorithms for efficiently inverting the covariance matrix. First, we implement the Akaike algorithm which exploits the block-Toeplitz structure of the covariance matrix for its recursive inversion. In the second approach, we implement the Wax-Kailath algorithm that achieves a factor of 2 reduction over the Akaike algorithm in the number of recursions involved and the computational effort required to form the inverse matrix.
Although a TVAR model works well for IF estimation of frequency modulated (FM) components in white noise, when the model is applied to a signal containing a finitely correlated signal in addition to the white noise, estimation performance degrades; especially when the correlated signal is not weak relative to the FM components. We propose a decorrelating TVAR (DTVAR) model based IF estimation and a DTVAR model based linear prediction error filter for FM interference rejection in a finitely correlated environment. Simulations show notable performance gains for a DTVAR model over the TVAR model for moderate to high SIRs. / Master of Science
|
3 |
Expectation-Maximization (EM) Algorithm Based Kalman Smoother For ERD/ERS Brain-Computer Interface (BCI)Khan, Md. Emtiyaz 06 1900 (has links) (PDF)
No description available.
|
4 |
Estimation and separation of linear frequency- modulated signals in wireless communications using time - frequency signal processing.Nguyen, Linh- Trung January 2004 (has links)
Signal processing has been playing a key role in providing solutions to key problems encountered in communications, in general, and in wireless communications, in particular. Time-Frequency Signal Processing (TFSP) provides eective tools for analyzing nonstationary signals where the frequency content of signals varies in time as well as for analyzing linear time-varying systems. This research aimed at exploiting the advantages of TFSP, in dealing with nonstationary signals, into the fundamental issues of signal processing, namely the signal estimation and signal separation. In particular, it has investigated the problems of (i) the Instantaneous Frequency (IF) estimation of Linear Frequency-Modulated (LFM) signals corrupted in complex-valued zero-mean Multiplicative Noise (MN), and (ii) the Underdetermined Blind Source Separation (UBSS) of LFM signals, while focusing onto the fast-growing area of Wireless Communications (WCom). A common problem in the issue of signal estimation is the estimation of the frequency of Frequency-Modulated signals which are seen in many engineering and real-life applications. Accurate frequency estimation leads to accurate recovery of the true information. In some applications, the random amplitude modulation shows up when the medium is dispersive and/or when the assumption of point target is not valid; the original signal is considered to be corrupted by an MN process thus seriously aecting the recovery of the information-bearing frequency. The IF estimation of nonstationary signals corrupted by complex-valued zero-mean MN was investigated in this research. We have proposed a Second-Order Statistics approach, rather than a Higher-Order Statistics approach, for IF estimation using Time-Frequency Distributions (TFDs). The main assumption was that the autocorrelation function of the MN is real-valued but not necessarily positive (i.e. the spectrum of the MN is symmetric but does not necessary has the highest peak at zero frequency). The estimation performance was analyzed in terms of bias and variance, and compared between four dierent TFDs: Wigner-Ville Distribution, Spectrogram, Choi-Williams Distribution and Modified B Distribution. To further improve the estimation, we proposed to use the Multiple Signal Classification algorithm and showed its better performance. It was shown that the Modified B Distribution performance was the best for Signal-to-Noise Ratio less than 10dB. In the issue of signal separation, a new research direction called Blind Source Separation (BSS) has emerged over the last decade. BSS is a fundamental technique in array signal processing aiming at recovering unobserved signals or sources from observed mixtures exploiting only the assumption of mutual independence between the signals. The term "blind" indicates that neither the structure of the mixtures nor the source signals are known to the receivers. Applications of BSS are seen in, for example, radar and sonar, communications, speech processing, biomedical signal processing. In the case of nonstationary signals, a TF structure forcing approach was introduced by Belouchrani and Amin by defining the Spatial Time- Frequency Distribution (STFD), which combines both TF diversity and spatial diversity. The benefit of STFD in an environment of nonstationary signals is the direct exploitation of the information brought by the nonstationarity of the signals. A drawback of most BSS algorithms is that they fail to separate sources in situations where there are more sources than sensors, referred to as UBSS. The UBSS of nonstationary signals was investigated in this research. We have presented a new approach for blind separation of nonstationary sources using their TFDs. The separation algorithm is based on a vector clustering procedure that estimates the source TFDs by grouping together the TF points corresponding to "closely spaced" spatial directions. Simulations illustrate the performances of the proposed method for the underdetermined blind separation of FM signals. The method developed in this research represents a new research direction for solving the UBSS problem. The successful results obtained in the research development of the above two problems has led to a conclusion that TFSP is useful for WCom. Future research directions were also proposed.
|
5 |
Método de descomposición modal no estacionaria basado en representación de espacio de estados con aplicación al análisis de señales ECGAvendaño, Luis Enrique 28 October 2024 (has links)
[ES] Esta tesis de doctorado está dedicada al problema de descomposición de señales no estacionarias en componentes modales, entendida como componentes oscilatorias independientes, con amplitud y fase dependientes del tiempo. Para este fin, se propone un enfoque metodológico basado en representaciones en espacio de estados diagonales en bloques. Una contribución teórica primaria de esta tesis consiste en demostrar que la respuesta de un sistema de espacio de estados diagonal en bloques puede ser representada en una forma modal con amplitudes y frecuencias dependientes del tiempo. Subsecuentemente, construyendo sobre este resultado, un marco de trabajo basado en filtros de Kalman se propone para la descomposición modal de señales no estacionarias. Como resultado, una familia de métodos paramétricos para la descomposición modal de señales no estacionarias univariadas y multivariadas basadas en representaciones de espacio de estados diagonales en bloques y filtros de Kalman ha sido postulada. La representación básica está construida en bloques de segundo orden, cada uno de los cuales representa los componentes en fase y en cuadratura de un único componente oscilatorio no estacionario. Así, la respuesta total es construida como la suma ponderada de cada uno de estos modos. La identificación de estos modelos requiere la estimación conjunta de las trayectorias y los parámetros modales dependientes del tiempo, así como los hiperparámetros del modelo, constituidos por la matriz de mezcla de modos, las matrices de covarianza del vector de estados, de parámetros y del ruido de medición, y las condiciones iniciales. Para este propósito, un algoritmo de Expectación-Maximización ha sido adaptado como parte de esta tesis. La metodología obtenida es entonces evaluada en la descomposición y eliminación de ruido de registros electrocardiográficos (ECG), los cuales consisten en componentes no-estacionarias pseudo-periódicas y son susceptibles a diferentes tipos de interferencias. La estructura de estas señales las hace susceptibles a las descomposiciones modales basadas propuestas en esta tesis. A diferencia de otros métodos populares de descomposición de señales, las descomposiciones obtenidas con la metodología propuesta proveen componentes oscilatorios con interpretabilidad física y que proveen resultados consistentes para señales multivariadas, como en el caso de registros de ECG con múltiples derivaciones.
Otra estrategia que se desarrolló en este proyecto investigativo lo constituye la aplicación de la transformada delta u operador de Euler al filtro de Kalman, esto condujo a resultados de alta precisión en la extracción de componentes de banda angosta.
La metodología propuesta constituye una herramienta confiable para la descomposición modal en línea de señales no estacionarias multicomponentes, con resultados excelentes / [CA] Esta tesi de doctorat està dedicada al problema de descomposició de senyals no-estacionaris en components modals, entesa com a components oscil·latòries independents amb amplitud i fase dependents del temps. Per a este fi, es proposa un enfocament metodològic basat en representacions en espai d'estats diagonals en blocs. Una contribució teòrica primària d'esta tesi consistix a demostrar que la resposta d'un sistema d'espai d'estats diagonal en blocs pot ser representada en una forma modal amb amplituds i freqüències dependents del temps. Subseqüentment, construint sobre este resultat, un marc de treball basat en filtres de Kalman es proposa per a la descomposició modal de senyals no estacionaris. Com a resultat, una família de mètodes paramètrics per a la descomposició modal de senyals no estacionaris univariadas i multivariades basades en representacions d'espai d'estats diagonals en blocs i filtres de Kalman ha sigut postulada. La representació bàsica està construïda en blocs de segon ordre, cadascun dels quals representa els components en fase i en quadratura d'un únic component oscil·latori no estacionari. Així, la resposta total és construïda com la suma ponderada de cadascun d'estos modes. La identificació d'estos models requerix l'estimació conjunta de les trajectòries i els paràmetres modals dependents del temps, així com els hiperparámetros del model, constituïts per la matriu de mescla de modes, les matrius de covariància del vector d'estats, de paràmetres i del soroll de mesurament, i les condicions inicials. Per a este propòsit, un algorisme d'Expectació-Maximització ha sigut adaptat com a part d'esta tesi. La metodologia obtinguda és llavors avaluada en la descomposició i eliminació de soroll de registres electrocardiogràfics (ECG), els quals consistixen en components no-estacionàries pseudo-periòdiques i són susceptibles a diferents tipus d'interferències. L'estructura d'estos senyals les fa susceptibles a les descomposicions modals basades propostes en esta tesi. A diferència d'altres mètodes populars de descomposició de senyals, les descomposicions obtingudes amb la metodologia proposada proveïxen components oscil·latoris amb interpretabilidad física i que proveïxen resultats consistents per a senyals multivariats, com en el cas de registres d'ECG amb múltiples derivacions.
Una altra estratègia que es va desenvolupar en este projecte investigativo el constituïx l'aplicació de la transformada delta o operador d'Euler al filtre de Kalman, això va conduir a resultats d'alta precisió en l'extracció de components de banda estreta.
La metodologia proposada constituïx una eina de confiança per a la descomposició modal en línia de senyals no estacionaris multicomponents, amb resultats excel·lents. / [EN] This PhD thesis is devoted to the problem of the decomposition of non-stationary signals in modal components, understood as independent oscillatory components with time-dependent amplitude and frequency. To this end, a methodological approach based on diagonal time-dependent state space models is postulated. A primary theoretical contribution of this work is to demonstrate that the response of a system in diagonal time-dependent state space form can be cast in a modal form characterized by time-dependent amplitudes and frequencies. Subsequently, building up on this result, a Kalman filter based framework for non-stationary modal decomposition is proposed. As a result, a family of parametric modal decomposition methods is postulated for univariate and multivariate non-stationary signals based on block-diagonal time-dependent state space representations and Kalman filtering/smoothing. The representation is built upon second order blocks, each representing the in-phase and quadrature components of a single non-stationary oscillatory component. The total response is then constructed as the weighted sum of each of these modes. Accordingly, the model identification involves the joint estimation of the modal trajectories and the time-dependent modal parameters, along with the model hyperparameters, constituted by the mode mixing matrix, the state, parameter and noise covariances, and initial conditions. A tailored Expectation-Maximization algorithm is designed for this purpose as part of this thesis. The obtained methodology is assessed in the decomposition and denoising of electrocardiographic (ECG) signals, which consist of pseudo-periodic non-stationary signals and are susceptible to significant interference. The ECG signal structure makes them amenable to the proposed non-stationary modal decompositions. In contrast to other popular non-stationary signal decomposition methods, the proposed method provides a physically meaningful decomposition of oscillatory components, with consistent results for multivariate signals, such as multi-lead ECG records.
Another strategy that was developed in this research project is the application of the delta transform or Euler operator to the Kalman filter, which led to highly precise results in extracting narrowband components.
The proposed methodology constitutes a reliable tool for on-line modal decomposition of multi-component non-stationary signals, with results comparable and even better than other state-of-the-art methods. / Avendaño, LE. (2024). Método de descomposición modal no estacionaria basado en representación de espacio de estados con aplicación al análisis de señales ECG [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/211185
|
Page generated in 0.1463 seconds