• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tenacidade à fratura translaminar dinâmica de um laminado híbrido metal-fibra titânio-grafite de grau aeronáutico / Dynamic translaminar fracture toughness of aeronautical grade titanium-graphite hybrid fiber-metal laminate

Gatti, Maria Cristina Adami 09 October 2009 (has links)
Diversos critérios de tenacidade à fratura translaminar dinâmica foram determinados para o laminado híbrido metal-fibra TiGra, empregando-se conceitos e metodologias da Mecânica da Fratura Elástica Linear MFEL (fator-K) e da Mecânica da Fratura Elasto-Plástica MFEP (integral-J). Verificou-se que as tenacidades de iniciação elasto-plástica, Jid, e de carga máxima, Jmd, do TiGra são controladas pelo desenvolvimento, ou supressão de delaminações. Os resultados indicaram que o emprego deste material se justifica mais pela sua resistência à propagação de danos (caracterizada por Jmd) do que à iniciação da fratura dinâmica (por Jid). De modo geral, os requisitos de validade de Jid como verdadeira propriedade do material (JId) foram satisfeitos, embora para Jmd boa parte das restrições quanto ao tamanho mínimo do corpo-de-prova tenha sido violada. Mais freqüentemente, velocidades mais rápidas de impacto beneficiaram as tenacidades-J do TiGra, enquanto que temperaturas mais elevadas afetaram negativamente estas propriedades. Quanto à MFEL, a tenacidade KJd do TiGra foi beneficiada pelo incremento na taxa de carregamento sob temperaturas mais elevadas, enquanto que a tenacidade Kid foi negativamente afetada pela taxa de deformação em todas as temperaturas avaliadas. Temperaturas mais altas também degradaram as propriedades de tenacidade-K do TiGra. Em oposição às tenacidades-J, os critérios KJd e Kid não satisfizeram em absoluto os mais exigentes critérios de contenção de plasticidade estabelecidos pela MFEL, se comparados aos propostos pela MFEP. Por fim, o desempenho mecânico do laminado TiGra foi severamente comprometido quando do cômputo da densidade específica para a determinação das tenacidades J e K por unidade de massa, sendo nesta ocasião o laminado híbrido facilmente superado por vários laminados convencionais da classe dos Carbono-Epóxi. / Several dynamic translaminar fracture toughness criteria have been determined for TiGr hybrid fiber-metal laminate through Linear Elastic (K-factor) and Elastic-Plastic (J-integral) Fracture Mechanics (LEFM and EPFM, respectively) concepts and methodologies. Instrumented Charpy impact testing was carried out over a wide range of temperatures under two loading rates. It has been discovered that the elastic-plastic initiation toughness, Jid, and the toughness at maximum load, Jmd, of TiGr are controlled by either delamination favoring or suppression. Impact tests revealed that the in-service use of TiGr must rely on its resistance to dynamic fracture propagation (as characterized by Jmd) rather than on fracture initiation (by Jid). In a broad sense, the requirements for Jid data validity as a material property (JId) were fulfilled, whereas many restrictive demands in regard to the minimum testpiece size were violated by the Jmd criterion. Generally, higher impact velocities were beneficial to TiGrs J-toughnesses, inasmuch as higher temperatures impaired these properties. Regarding the LEFM approach, KJd toughness of TiGr laminate was imparted by faster impacts at higher temperatures, whilst the strain rate negatively influenced the Kid toughness over the whole temperature range tested. Higher temperatures also degraded the K-toughness properties of TiGr hybrid laminate. Differently from J-toughnesses values, the KJd e Kid criteria did not satisfy at all the more stringent criteria set forth by the LEFM approach with regard to plastic constraint, as compared to those established by EPFM. Finally, the mechanical performance of TiGr laminate was overwhelmingly compromised as the materials specific gravity was taken in account to obtain K and J toughness values by unit weight, so that TiGr was by far exceeded in this regard by conventional Carbon/Epoxy composite laminates.
2

Tenacidade à fratura translaminar dinâmica de um laminado híbrido metal-fibra titânio-grafite de grau aeronáutico / Dynamic translaminar fracture toughness of aeronautical grade titanium-graphite hybrid fiber-metal laminate

Maria Cristina Adami Gatti 09 October 2009 (has links)
Diversos critérios de tenacidade à fratura translaminar dinâmica foram determinados para o laminado híbrido metal-fibra TiGra, empregando-se conceitos e metodologias da Mecânica da Fratura Elástica Linear MFEL (fator-K) e da Mecânica da Fratura Elasto-Plástica MFEP (integral-J). Verificou-se que as tenacidades de iniciação elasto-plástica, Jid, e de carga máxima, Jmd, do TiGra são controladas pelo desenvolvimento, ou supressão de delaminações. Os resultados indicaram que o emprego deste material se justifica mais pela sua resistência à propagação de danos (caracterizada por Jmd) do que à iniciação da fratura dinâmica (por Jid). De modo geral, os requisitos de validade de Jid como verdadeira propriedade do material (JId) foram satisfeitos, embora para Jmd boa parte das restrições quanto ao tamanho mínimo do corpo-de-prova tenha sido violada. Mais freqüentemente, velocidades mais rápidas de impacto beneficiaram as tenacidades-J do TiGra, enquanto que temperaturas mais elevadas afetaram negativamente estas propriedades. Quanto à MFEL, a tenacidade KJd do TiGra foi beneficiada pelo incremento na taxa de carregamento sob temperaturas mais elevadas, enquanto que a tenacidade Kid foi negativamente afetada pela taxa de deformação em todas as temperaturas avaliadas. Temperaturas mais altas também degradaram as propriedades de tenacidade-K do TiGra. Em oposição às tenacidades-J, os critérios KJd e Kid não satisfizeram em absoluto os mais exigentes critérios de contenção de plasticidade estabelecidos pela MFEL, se comparados aos propostos pela MFEP. Por fim, o desempenho mecânico do laminado TiGra foi severamente comprometido quando do cômputo da densidade específica para a determinação das tenacidades J e K por unidade de massa, sendo nesta ocasião o laminado híbrido facilmente superado por vários laminados convencionais da classe dos Carbono-Epóxi. / Several dynamic translaminar fracture toughness criteria have been determined for TiGr hybrid fiber-metal laminate through Linear Elastic (K-factor) and Elastic-Plastic (J-integral) Fracture Mechanics (LEFM and EPFM, respectively) concepts and methodologies. Instrumented Charpy impact testing was carried out over a wide range of temperatures under two loading rates. It has been discovered that the elastic-plastic initiation toughness, Jid, and the toughness at maximum load, Jmd, of TiGr are controlled by either delamination favoring or suppression. Impact tests revealed that the in-service use of TiGr must rely on its resistance to dynamic fracture propagation (as characterized by Jmd) rather than on fracture initiation (by Jid). In a broad sense, the requirements for Jid data validity as a material property (JId) were fulfilled, whereas many restrictive demands in regard to the minimum testpiece size were violated by the Jmd criterion. Generally, higher impact velocities were beneficial to TiGrs J-toughnesses, inasmuch as higher temperatures impaired these properties. Regarding the LEFM approach, KJd toughness of TiGr laminate was imparted by faster impacts at higher temperatures, whilst the strain rate negatively influenced the Kid toughness over the whole temperature range tested. Higher temperatures also degraded the K-toughness properties of TiGr hybrid laminate. Differently from J-toughnesses values, the KJd e Kid criteria did not satisfy at all the more stringent criteria set forth by the LEFM approach with regard to plastic constraint, as compared to those established by EPFM. Finally, the mechanical performance of TiGr laminate was overwhelmingly compromised as the materials specific gravity was taken in account to obtain K and J toughness values by unit weight, so that TiGr was by far exceeded in this regard by conventional Carbon/Epoxy composite laminates.
3

Multifunctional Nanocomposites and Particulate Composites with Nanocomposite Binders for Deformation and Damage Sensing

Sengezer, Engin Cem 28 August 2017 (has links)
At present, structural health monitoring efforts focus primarily on the sensors and sensing systems for detecting instances and locations of damage through techniques such as X-ray, micro CT, acoustic emission, infrared thermography, lamb wave etc., which only detect cracks at relatively large length scales and rely heavily on sensors and sensing systems which are external to the material system. As an alternative to conventional commercially available SHM techniques, the current work explores processing-structure-property relationships starting from carbon nanotube (CNT) based nanocomposites to particulate composites with nanocomposite binder/matrix materials, i.e. hybrid particulate composites to investigate deformation and damage sensing capabilities of inherently sensing materials and structures through their piezoresistive (coupled electro-mechanical) response. Initial efforts focused on controlling the dispersion of CNTs and orientation of CNT filaments within nanocomposites under dielectrophoresis to guide design and fabrication process of nanocomposites by tuning CNT concentration, applied AC electric field intensity, frequency and exposure time. It is observed that a combination of exposure time to AC electric field and the AC field frequency are the key drivers of filament width and spacing and that the network for filament formation is much more efficient for pristine CNTs than for acid treated functionalized CNTs. With the knowledge obtained from controlling the morphological features, AC field-induced long range alignment of CNTs within bulk nanocomposites was scaled up to form structural test coupons. The morphology, electrical and mechanical properties of the coupons were investigated. The anisotropic piezoresistive response both for parallel and transverse to CNT alignment direction within bulk composite coupons under various loading conditions was obtained. It is observed that control of the CNT network allows for the establishment of percolation paths and piezoresistive response well below the nominal percolation threshold observed for random, so called well-dispersed CNT network distributions. The potential for use of such bulk nanocomposites in SHM applications to detect strain and microdamage accumulation is further demonstrated, underscoring the importance of microscale CNT distribution/orientation and network formation/disruption in governing the piezoresistive sensitivities. Finally, what may be the first experimental study in the literature is conducted for real-time embedded microscale strain and damage sensing in energetic materials by distributing the CNT sensing network throughout the binder phase of inert and mock energetic composites through piezoresistive response for SHM in energetic materials. The incorporation of CNTs into inert and mock energetic composites revealed promising self-diagnostic functionalities for in situ real-time SHM applications under quasi-static and low velocity impact loading for solid rocket propellants, detonators and munitions to reduce the stochastic nature of safety characterization and help in designing insult tolerant energetic materials. / Ph. D.

Page generated in 0.0772 seconds