• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 35
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 131
  • 131
  • 131
  • 131
  • 35
  • 33
  • 31
  • 30
  • 23
  • 22
  • 19
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Therapeutic systems for Insulin-like growth factor-1 / Therapeutische Systeme für Insulin-like growth factor-1

Schultz, Isabel January 2015 (has links) (PDF)
SUMMARY Insulin-like growth factor I (IGF-I) is a polypeptide with a molecular weight of 7.649 kDa and an anabolic potential. Thereby, IGF-I has a promising therapeutic value e.g. in muscle wasting diseases such as sarcopenia. IGF-I is mainly secreted by the liver in response to growth hormone (GH) stimulation and is rather ubiquitously found within all tissues. The effects of IGF-I are mediated by its respective IGF-I transmembrane tyrosine kinase receptor triggering the stimulation of protein synthesis, glucose uptake and the regulation of cell growth. The actions of IGF-I are modulated by six IGF binding proteins binding and transporting IGF-I in a binary or ternary complex to tissues and receptors and modulating the binding of IGF-I to its receptor. The nature of the formed complexes impacts IGF-I`s half-life, modulating the half-life between 10 minutes (free IGF-I) to 12 - 15 hours when presented in a ternary complex with IGF binding protein 3 and an acid labile subunit (ALS). Therefore, sustained drug delivery systems of free IGF-I are superficially seen as interesting for the development of controlled release profiles, as the rate of absorption is apparently and easily set slower by simple formulation as compared to the rapid rate of elimination. Thereby, one would conclude, the formulation scientist can rapidly develop systems for which the pharmacokinetics of IGF-I are dominated by the formulation release kinetics. However, the in vivo situation is more complex and as mentioned (vide supra), the half-life may easily be prolonged up to hours providing proper IGF-I complexation takes place upon systemic uptake. These and other aspects are reviewed in Chapter I, within which we introduce IGF-I as a promising therapeutic agent detailing its structure and involved receptors along with the resulting signaling pathways. We summarize the control of IGF-I pharmacokinetics in nature within the context of its complex system of 6 binding proteins to control half-life and tissue distribution. Furthermore, we describe IGF-I variants with modulated properties in vivo and originated from alternative splicing. These insights were translated into sophisticated IGF-I delivery systems for therapeutic use. Aside from safety aspects, the challenges and requirements of an effective IGF-I therapy are discussed. Localized and systemic IGF-I delivery strategies, different routes of administration as well as liquid and solid IGF-I formulations are reviewed. Effective targeting of IGF-I by protein decoration is outlined and consequently this chapter provides an interesting guidance for successful IGF-I-delivery. In Chapter II, we firstly outline the stability of IGF-I in liquid formulations with the intention to deliver the biologic through the lung and the impact of buffer type, sodium chloride concentration and pH value on IGF-I stability is presented. IGF-I integrity was preserved in histidine buffer over 4 months at room temperature, but methionine 59 oxidation (Met(o)) along with reducible dimer and trimer formation was observed in an acidic environment (pH 4.5) and using acetate buffer. Strong aggregation resulted in a complete loss of IGF-I bioactivity, whereas the potency was partly maintained in samples showing a slight aggregation and complete IGF-I oxidation. Atomization by air-jet or vibrating-mesh nebulizers yielded in limited Met(o) formation and no aggregation. The results of IGF-I nebulization experiments regarding aerosol output rate, mass median aerodynamic diameter and fine particle fraction were comparable with 0.9% sodium chloride reference, approving the applicability of liquid IGF-I formulations for pulmonary delivery. In Chapter III we escalated the development to solid delivery systems designed for alveolar landing upon inhalation and by deploying trehalose and the newly introduced for pulmonary application silk-fibroin as carriers. Microparticles were produced using nano spray drying following analyses including IGF-I integrity, IGF-I release profiles and aerodynamic properties. In vitro transport kinetics of IGF-I across pulmonary Calu-3 epithelia were suggesting similar permeability as compared to IGF-I’s cognate protein, insulin that has already been successfully administered pulmonary in clinical settings. These in vivo results were translated to an ex vivo human lung lobe model. This work showed the feasibility of pulmonary IGF-I delivery and the advantageous diversification of excipients for pulmonary formulations using silk-fibroin. Chapter IV focuses on an innovative strategy for safe and controllable IGF-I delivery. In that chapter we escalated the development to novel IGF-I analogues. The intention was to provide a versatile biologic into which galenical properties can be engineered through chemical synthesis, e.g. by site directed coupling of polymers to IGF-I. For this purpose we genetically engineered two IGF-I variants containing an unnatural amino acid at two positions, respectively, thereby integrating alkyne functions into the primary sequence of the protein. These allowed linking IGF-I with other molecules in a site specific manner, i.e. via a copper catalyzed azide-alkyne Huisgen cycloaddition (click reaction). In this chapter we mainly introduce the two IGF-I variants, detail the delivery concept and describe the optimization of the expression conditions of the IGF-I variants. In conclusion, we span from simple liquid formulations for aerolization through solid systems for tailored for maximal alveolar landing to novel engineered IGF-I analogues. Thereby, three strategies for advanced IGF-I delivery were addressed and opportunities and limitations of each were outlined. Evidence was provided that sufficiently stable and easy to manufacture formulations can be developed as typically required for first in man studies. Interestingly, solid systems – typically introduced in later stages of pharmaceutical development – were quite promising. By use of silk-fibroin as a new IGF-I carrier for pulmonary administration, a new application was established for this excipient. The demonstrated success using the ex vivo human lung lobe model provided substantial confidence that pulmonary IGF-I delivery is possible in man. Finally, this work describes the expression of two IGF-I variants containing two unnatural amino acids to implement an innovative strategy for IGF-I delivery. This genetic engineering approach was providing the fundament for novel IGF-I analogues. Ideally, the biologic is structurally modified by covalently linked moieties for the control of pharmacokinetics or for targeted delivery, e.g. into sarcopenic muscles. One future scenario is dicussed in the ‘conclusion and outlook’ section for which IGF-I is tagged to a protease sensitive linker peptide and this linker peptide in return is coupled to a polyethylenglykole (PEG) polymer (required to prolong the half-life). Some proteases may serve as proxy for sarcopenia such that protease upregulation in compromised muscle tissues drives cleavage of IGF-I from the PEG. Thereby, IGF-I is released at the seat of the disease while systemic side effects are minimized. / ZUSAMMEMFASSUNG Insulin-like growth factor I (IGF-I) ist ein 7.6 kDa großes Polypeptid, das eine anabole Wirkung besitzt und dadurch ein vielversprechendes Therapeutikum in Muskelerkrankungen wie z.B. Sarkopenie darstellt. IGF-I wird hauptsächlich von der Leber gebildet und infolge der Stimulation des Wachstumshormons Somatropin sezerniert. In fast jedem Gewebe des Körpers kommt IGF-I vor. Die Wirkungen von IGF-I werden über eigene Rezeptoren, die an die Zellmembran gebunden sind, die Rezeptor-Tyrosinkinasen, ausgeführt. Zu den Wirkungen gehören unter anderem die Stimulation der Proteinsynthese, die Aufnahme von Glucose in die Zellen und die Regulierung des Zellwachstums. Die Effekte von IGF-I werden von 6 IGF- Bindungsproteinen (IGFBP 1-6) gesteuert, indem IGF-I in einem binären oder ternären Komplex zu den Geweben transportiert oder auch die Bindung von IGF-I an den Rezeptor verhindert werden kann. Die sich bildenden Komplexe haben auch einen Einfluss auf die Halbwertszeit (HWZ) von IGF-I, da für ungebundenes IGF-I eine HWZ von ca. 10 Minuten festgestellt werden konnte, aber IGF-I, gebunden in einem ternären Komplex mit dem Bindungsprotein 3 und der säurelabilen Untereinheit (ALS) eine erhöhte HWZ von 12 – 15 Stunden aufweist. Deswegen sind „sustained drug delivery“ Systeme von ungebundenem IGF-I auf den ersten Blick interessant für die Entwicklung von kontrollierten Freisetungsprofilen, da die Absorptionsgeschwindigkeit offensichtlich und problemlos durch triviale Formulierung verlangsamt werden kann im Vergleich zu der schnellen Eliminationsgeschwindigkeit. Deshalb könnte man daraus schließen, dass ein Formulierungsexperte recht schnell Systeme entwickeln kann, in denen die Freisetzungskinetik der Formulierung über die pharmakokinetischen Eigenschaften von IGF-I dominiert. Jedoch ist die in vivo Situation wesentlich komplexer und wie oben bereits erwähnt, könnte die Halbwertszeit problemlos bis zu mehreren Stunden verlängert werden, sofern geeignete Komplexbildung von IGF-I nach systemischer Aufnahme erfolgt. Diese und weitere Aspekte werden in Kapitel I beschrieben. Außerdem stellen wir IGF-I als wertvolles Therapeutikum vor, beschreiben dessen Struktur, die beteiligten Rezeptoren und die daraus resultierenden Signalwege. Wir fassen die Kontrolle der Pharmakokinetik von IGF-I in der Natur zusammen, im Rahmen von einem komplexen System aus 6 Bindungsproteinen, die die Halbwertszeit und die Gewebeverteilung steuern. Außerdem beschreiben wir IGF-I Varianten, die veränderte Eigenschaften in vivo aufweisen und durch alternatives Spleißen entstanden sind. Diese Erkenntnisse werden in hochentwickelte „IGF-I delivery“ Systeme für den therapeutischen Gebrauch umgesetzt. Neben Sicherheitsaspekten werden die Herausforderungen und Anforderungen einer effektiven IGF-I Therapie diskutiert. Darüber hinaus wird über lokale und systemische „IGF-I delivery“ Strategien, verschiedene Verabreichungswege sowie flüssige und feste IGF-I Formulierungen berichtet. Ebenso wird die wirkungsvolle IGF-I Freisetzung am Zielort durch Ausschmückung des Proteins beschrieben und dementsprechend liefert dieses Kapitel eine interessante Orientierungshilfe für eine erfolgreiche IGF-I Therapie. Im Kapitel II untersuchen wir die Stabilität von IGF-I in flüssigen Formulierungen zur pulmonalen Anwendung bezüglich Puffersystem, Natriumchlorid Konzentration und pH Wert. Die IGF-I Integrität wurde im Histidin Puffer über 4 Monate bei Raumtemperatur aufrechterhalten. Allerdings wurde bei Verwendung eines Acetat Puffers pH 4.5, Oxidation am Methionin 59 (Met(o)) sowie die Entstehung von reduzierbaren Dimeren und Trimeren beobachtet. Starke Aggregation führte zum vollständigen Verlust der IGF-I Bioaktivität, während die Wirkung in Proben aufrechterhalten werden konnte, in denen eine geringe Aggregation, aber deutliche Oxidation festgestellt wurde. Nach der Verneblung der flüssigen IGF-I Formulierung im Histidin-Puffer pH 6.5 mit einem Druckluftvernebler und einem Schwingmembranvernebler wurde jeweils eine leichte Bildung von Met(o), aber keine Aggregatbildung ermittelt. Die Ergebnisse der IGF-I Verneblungsexperimente waren vergleichbar mit den Referenzwerten einer isotonischen Kochsalzlösung bezüglich der Abgabeleistung, dem massenbezogenen medianen aerodynamischen Durchmesser und dem Feinpartikel Anteil. Hierdurch wurde gezeigt, dass sich flüssige IGF-I Formulierungen zur pulmonalen Anwendung eignen. Im Kapitel III berichten wir von einer Weiterentwicklung zu festen IGF-I Formulierungen für die pulmonale Route unter Verwendung von Trehalose und Seidenfibroin als neues Trägermaterial für die pulmonale Applikation. Mikropartikel wurden durch Nanosprühtrocknung hergestellt und anschließend auf IGF-I Integrität, IGF-I Freisetzung und dem aerodynamischen Durchmesser untersucht. Die Kinetik des in vitro Transportes von IGF-I durch Calu-3 Lungenepithelzellen war vergleichbar zur Durchgängigkeit von Insulin, das bereits erfolgreich pulmonal verabreicht wurde. Dieser Erfolg wurden auch ex vivo in einem menschlichen Lungenlappen Model bestätigt. In der Arbeit wird somit gezeigt, dass IGF-I zur pulmonalen Anwendung geeignet ist und die Verwendung von Seidenfibroin eine nützliche Erweiterung zu den bisher eingesetzten Trägermaterialien darstellt. Das Kapitel IV konzentriert sich auf eine innovative Strategie, um IGF-I sicher und kontrollierbar zu verabreichen. In diesem Kapitel erweitern wir die Entwicklung zu neuartigen IGF-I Varianten. Wir streben damit an ein vielseitiges Biologikum zu entwickeln, dessen Eigenschaften durch chemische Reaktionen verändert werden können wie zum Beispiel die spezifische Verknüpfung mit Polymeren. Zu diesem Zweck erzeugten wir gentechnisch zwei IGF-I Varianten, die jeweils an zwei Positionen eine unnatürliche Aminosäure aufweisen und führten dadurch Alkine Gruppen in die Primärstruktur der Proteine ein. Diese Vorgehensweise ermöglicht es nun IGF-I mit anderen Molekülen positionsspezifisch zu verbinden wie zum Beispiel durch die kupferkatalysierte Azid-Alkin-Cycloaddition (Click – Reaktion). In diesem Kapitel stellen wir hauptsächlich die zwei IGF-I Varianten vor, beschreiben ausführlich das Konzept der IGF-I Zustellung und erklären die Vorgehensweise zur Optimierung der Expressionsbedingungen der IGF-I Varianten. Abschließend lässt sich sagen, dass sich diese Arbeit über einfach flüssige Formulierungen zur Verneblung, feste Formulierung mit guten aerodynamischen Eigenschaften zur Erreichung der Alveolen und neuartig entwickelte IGF-I Varianten erstreckt. Hierzu werden drei Strategien zur modernen IGF-I Gabe thematisiert und sowohl die Möglichkeiten als auch die Grenzen der jeweiligen Therapie erörtert. Wir haben den Nachweis erbracht, dass ausreichend stabile und leicht herzustellende Formulierungen entwickelt werden können, die üblicherweise für „First-In-Man“ Studien benötigt werden. Interessanterweise stellten sich die festen Formulierungen, die eigentlich in den späteren Phasen der pharmazeutischen Entwicklung eingeführt werden, als sehr vielversprechend heraus. Durch den Einsatz von Seidenfibroin als neuen Träger zur pulmonalen Anwendung haben wir einen neuen Verwendungszweck für Seidenfibroin etabliert. Der erfolgreiche Versuch ex vivo am menschlichen Lungenlappen Model liefert die feste Überzeugung, dass es möglich ist, IGF-I im Menschen pulmonal anzuwenden. Letztendlich, beschreibt die Arbeit die Expression von zwei IGF-I Varianten, die zwei unnatürliche Aminosäuren aufweisen, um eine neuartige Strategie zur IGF-I Verabreichung umzusetzen. Dieser gentechnische Ansatz liefert die Grundlage für neue IGF-I Varianten. Idealerweise, wird das Biopharmazeutikum strukturell durch kovalent gebundene Reste verändert, um die pharmakokinetischen Eigenschaften zu steuern oder um zielgenaue Wirkstoffabgabe zu erreichen zum Beispiel in den sarkopenischen Muskeln. Ein Zukunftsszenarium wird im Abschnitt „Conclusion and Outlook“ diskutiert, in dem IGF-I mit einem Protease empfindlichen Linker versehen wird, der wiederum mit einem Polyethylenglykol (PEG) Polymer verknüpft ist. Der PEG Rest wird benötigt, um die Hablbwertszeit von IGF-I zu erhöhen. Einige Proteasen könnten als Stellvertreter für Sarkopenie dienen, so dass die Hochregulierung der Proteasen in gefährdeten Muskelgeweben zur Spaltung von IGF-I und dem PEG Rest führt. Dadurch wird IGF-I am Ursprung der Erkrankungen freigesetzt, während die systemischen Nebenwirkungen weitgehend vermindert sind.
2

Insulin-like growth factor I (IGF I) in the red spotted newt, Notophthalmus viridescens: Description of larval limb development ; localization of IGF I in larval and adult newt limbs ; and effects of IGF I on epimorphic regeneration of an adult newt appendage in vitro.

Wong, Christine Jaye. January 2004 (has links)
Thesis (Ph. D.)--University of Toronto, 2004. / Includes bibliographical references.
3

Insulin-like Growth Factor-1, Mechano Growth Factor und Myosin Schwerketten Transformation beim Krafttraining

Heinichen, Markus Gerd, January 2006 (has links)
Ulm, Univ. Diss., 2006.
4

Einflussfaktoren auf die IGF-1-Konzentrationen in Viertelanfangsgemelkproben von Kühen mit unterschiedlicher Eutergesundheit : eine Feldstudie /

Ruffer, Ulrike. January 2003 (has links) (PDF)
Diss. Univ. Giessen, 2003.
5

The oestrogen receptor in porcine granulosa cells

Bains, Harvinder January 2002 (has links)
No description available.
6

Charakterisierung der pulmonalen Pharmakokinetik von Salmeterol und Insulin-like Growth Factor-1 / Characterisation of the pulmonary pharmacokinetics of salmeterol and insulin-like growth factor-1

Vollmers, Frederic January 2015 (has links) (PDF)
Für inhalativ applizierte Arzneimittel spielt das Ausmaß der pulmonalen Absorption eine entscheidende Rolle. Für Substanzen, die lokal in der Lunge wirken sollen, sind für eine gute Wirksamkeit hohe lokale Wirkstoffkonzentrationen, und für eine geringe Nebenwirkungsrate niedrige systemische Plasmaspiegel wichtig. Sollen allerdings Substanzen das Lungenepithel überwinden und im systemischen Kreislauf wirken, ist eine hohe systemische Verfügbarkeit für eine gute Wirkung gewünscht. Das Ziel dieser Studie war es mit in vitro und ex vivo Methoden das Absorptions- und Permeationsverhalten von pulmonal applizierten Substanzen zu studieren. Der Transportmechanismus über das Lungenepithel des langwirksamen ß2-Agonisten Salmeterol wurde mithilfe des humanen ex vivo Lungenperfusionsmodells untersucht. Die Anwendung von L-Carnitin als Hemmstoff von organischen Kationen/Carnitin Transportern (OCT/N) bewirkte eine Verringerung der pulmonalen Absorption von Salmeterol von ca. 90 %, was auf eine Beteiligung von Transportern, möglicherweise des OCTN2 oder OTCN1, für den Transport von Salmeterol über das Lungenepithel hindeutete. Es wurde somit zum ersten Mal erfolgreich gezeigt, dass Salmeterol wahrscheinlich als Substrat der Transportproteine fungiert und der Übertritt über das Lungenepithel von organischen Kationen/Carnitin Transportern abhängig ist. Bisher wurde eine Interaktion von Salmeterol mit den OCT/N nur in in vitro Versuchen studiert und Salmeterol wurde nur als Hemmstoff und nicht als Substrat untersucht. Die Beteiligung eines Transporters für die pulmonale Absorption von Salmeterol steht außerdem im Einklang mit Untersuchungen über weitere ß2-Agonisten wie das kurzwirksame Salbutamol und das langwirksame GW597901. Somit scheinen sowohl lipophile als auch hydrophile ß2-Agonisten Substrate für die OCT/N zu sein. Die Fähigkeit von IGF-1, nach pulmonaler Applikation in den systemischen Kreislauf zu gelangen, wurde in der vorliegenden Studie mit Hilfe des Lungenperfusionsmodells untersucht. Das IGF-1 wurde gebunden an Trehalose oder an Fibroin als Pulver verabreicht. Die Trehalose sollte eine schnelle Abgabe des IGF 1 bewirken, und das Fibroin sollte zum einen ein Trägermaterial mit schützenden Eigenschaften für das IGF 1 darstellen, und zum anderen sollte eine mögliche verzögerte Freisetzung von IGF-1 aus Fibroin in einem ex vivo Modell untersucht werden, die in vorausgegangenen in vitro Versuchen über 3 h lang vorhanden war. Das Peptid wurde nach der Applikation sowohl der Trehalosepartikel als auch der Fibroinpartikel pulmonal absorbiert und folgte einer linearen Verteilungskinetik. Dieses lineare Absorptionsverhalten des IGF-1 war vergleichbar mit der Kinetik von inhalativem Insulin, die in in vivo Studien beobachtet wurde. Somit konnte gezeigt werden, dass das IGF-1 nach pulmonaler Applikation systemisch verfügbar sein könnte und eine vergleichbare pulmonale Pharmakokinetik wie das strukturell ähnliche Insulin besitzt. Außerdem unterschied sich das Absorptionsverhalten von IGF-1, gebunden an Trehalose, nicht signifikant von dem von IGF-1/Fibroin, was im Gegensatz zu in vitro Untersuchungen stand, in denen das IGF-1 verzögert aus Fibroin freigesetzt wurde. Somit wirkte sich die kontrollierte Abgabe in vitro nicht auf die Verteilungskinetik ex vivo aus. Daraus ergibt sich, dass sowohl Trehalose als auch Fibroin als Trägermaterial für IGF-1 zur pulmonalen Applikation geeignet wären, und dass IGF-1, gebunden an Fibroin eine Formulierung wäre, die zum einen das IGF 1 schützen kann und die zum anderen eine gleiche pulmonale Kinetik wie IGF 1, gebunden an schnell auflösende Trägersubstanzen, besitzt. Außerdem wurde dadurch die Wichtigkeit betont, die Pharmakokinetik von pulmonal verabreichten Substanzen am intakten Organ mit erhaltener Komplexität und Funktionalität zu untersuchen, und dass das Lungenperfusionsmodell hierfür eine geeignete Methode darstellt. Darüber hinaus wurde belegt, dass mithilfe des Lungenperfusionsmodells erfolgreich pharmakokinetische Daten für nieder- und höhermolekulare Substanzen gesammelt werden können, die als Aerosol oder als Pulver appliziert werden. Auch in den in der vorliegenden Arbeit durchgeführten in vitro Permeationsversuchen, die mit der Bronchialepithelzelllinie Calu-3 durchgeführt wurden, zeigte IGF-1 vergleichbare lineare Permeationseigenschaften wie das Insulin, mit einem apparenten Permeationskoeffizienten von 1,49 * 10-8 cm/sec für IGF-1 und 2,11 * 10-8 cm/sec für Insulin. Das IGF 1 schien durch die Calu-3 Zellen sowohl parazellulär als auch transzytotisch zu permeieren, wie es für Makromoleküle generell vermutet wird. Durch die Verwendung von Hemmstoffen der Transzytose bzw. bestimmter endozytotischer Mechanismen in den Permeationsstudien konnte gezeigt werden, dass, wie bereits genannt, der Transport durch die Zellen eine wichtige Rolle für den Übertritt von IGF-1 über Calu-3 Zellmonolayer spielte. Die Studien ergaben außerdem, dass die zelluläre Aufnahme des IGF-1 unabhängig von Clathrin und abhängig von Dynamin war. Der Einsatz einer humanen bronchioalveolären Lavage in den Permeationsversuchen bewirkte zum einen eine Erhöhung des Transportes von IGF 1 durch die Calu-3 Zellen, und zum anderen war die zelluläre Aufnahme in diesem Fall unabhängig von Dynamin und unterschied sich somit von den vorherigen Untersuchungen, in denen keine Lavage eingesetzt wurde. Das bedeutet, dass Faktoren in einer bronchioalveolaren Lavage enthalten waren, die sowohl das Ausmaß der Permeation als auch den Mechanismus der zellulären Aufnahme von IGF-1 in Calu-3 Zellen beeinflussten. Zusammenfassend konnten in der vorliegenden Arbeit erfolgreich weitere Hinweise für die Beteiligung von Transportern an der pulmonalen Absorption von ß2-Agonisten mithilfe des ex vivo Lungenperfusionsmodells gefunden werden, was somit eine wertvolle Ergänzung zu bisher vorhanden in vitro Studien darstellt. Daneben wurde zum ersten Mal gezeigt, dass das IGF-1 nach Applikation in die Lunge pulmonal absorbiert werden könnte. Das belegt den Nutzen der Lunge als Eintrittsort in den systemischen Kreislauf, was vor allem für peptidische Arzneistoffe von Bedeutung ist. / The extent of the pulmonary absorption plays an important role for drugs applied via inhalation. For substances meant to exhibit local effects within the lung, high local concentrations are crucial for maximum efficacy, and for a low rate of systemic adverse effects low plasma levels are advantageous. But if substances are meant to pass the lung epithelia and act in the systemic circulation a high systemic availability is requested for good efficacy. The aim of this study was to investigate the absorption and permeation behavior of pulmonarily applied substances using in vitro and ex vivo methods. The transport mechanism of the long acting ß2-agonist salmeterol through lung epithelia was studied with the help of an ex vivo lung perfusion model. The organic cation/carnitine transporter inhibitor l-carnitine caused a decrease of the pulmonary absorption of salmeterol of about 90 %, indicating an involvement of transporters, possibly OCTN2 or OCTN1, for the uptake of salmeterol through the lung epithelia. For the first time it was successfully shown that salmeterol acts as a substrate for transport proteins and that its transport through the lung epithelia is dependent on the organic cation/carnitine transporters (OCT/N). So far the interaction of salmeterol with the OCT/N had been studied only in vitro and salmeterol had been solely described as an inhibitor and not as a substrate. Furthermore the results on the pulmonary absorption of salmeterol are in accordance with studies about other ß2-agonists like the short acting salbutamol and the long acting GW597901. Apparently, lipophilic and hydrophilic ß2-agonists are substrates for the OCT/N. The pulmonary absorption of IGF-1 was investigated in this study using the lung perfusion model. IGF-1 was applied bound to trehalose or fibroin. The trehalose was used for a fast release of IGF-1. The fibroin as a carrier was meant to provide a protection of IGF-1, and a possible sustained release that was shown in previous in vitro assays over about 3 h, was to be studied in an ex vivo model. The peptide was absorbed pulmonarily after application of the treahlose and fibroin microparticles and exhibited linear distribution kinetics. This linear absorption behavior of IGF-1 was comparable to the kinetics of inhaled insulin observed in in vivo studies. Therefore it was shown that IGF-1 might be systemically available after pulmonary application and that IGF 1 displays comparable pulmonary pharmacokinetics to the structurally similar insulin. Additionally, the absorption behavoir of IGF-1 bound to trehalose was not significantly different from IGF 1/fibroin, which was in contrast to in vitro studies showing a sustained release of IGF-1 bound to fibroin. Thus, the in vitro controlled release was not mirrored in the distribution kinetics ex vivo. This suggests that both trehalose and fibroin are suitable carriers for pulmonary application of IGF-1 and that IGF-1 bound to fibroin provides a formulation that is able to protect IGF-1 and possesses comparable pulmonary kinetics to IGF-1 bound to fast dissolving carriers. Additionally these data demonstrated the importance to study the pharmacokinetics of pulmonarily applied substances by using the intact organ with conserved complexity and functionality, and that the human isolated perfused lung is a suitable model. Furthermore it was proven, that pharmakokinetic data of low and high molecular compounds applied as aerosol or powder, can be successfully obtained using the lung perfusion model. The in vitro permeation experiments of the present study employing Calu-3 bronchial epithelial cells also showed a linear absorption behavior of IGF-1 comparable to that of insulin, with an apparent permeability coefficient of 1,49 * 10-8 cm/sec for IGF-1 and 2,11 * 10-8 cm/sec for insulin. IGF-1 apparently passed the Calu-3 cells via a paracellular and transcytotical mechanisms, which are thought to be the major routes of macromolecules. The use of inhibitors of transcytosis and certain endocytotic pathways showed that the transport through the cells was important for the passage of IGF-1 through Calu-3 cell monolayers, as mentioned before. Furthermore the studies revealed that the cellular uptake of IGF-1 was independent of clathrin and dependent on dynamin. Human broncheoalveolar lavage caused an increase of the IGF-1 transport through the Calu-3 cells and in contrast to former investigations without a lavage the cellular uptake was independent of dynamin in this case. That implies that the broncheoalveolar lavage contained factors influencing both the extent and the mechanism of the cellular IGF-1 uptake into Calu-3 cells. In conclusion, this work employing an ex vivo lung perfusion model provides additional evidence for the involvement of transporters in the pulmonary absorption of ß2-agonists. These data demonstrate a valuable extension of knowledge compared to previous in vitro studies. Furthermore, for the first time it has been shown that IGF 1 might be pulmonarily absorbed after application to the lung. This shows the suitability of the lung as point of entrance into the systemic circulation, which is especially interesting for peptide drugs.
7

Role of IGF-I in ovine fetal and placental growth and development / Fong Lok.

Lok, Fong January 1998 (has links)
Bibliography: p. 190-234. / 276 p. : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aims to directly test the hypothesis that restricting placental delivery of oxygen and nutrients to the fetus restricts fetal growth, in part by reducing endogenous production of insulin like growth factor-I / Thesis (Ph.D.)--University of Adelaide, Dept. of Obstetrics and Gynaecology, 1999?
8

The paracrine IGF-I system and its role in gonad maturation of sterlet, Acipenser ruthenus Linnaeus, 1758

Würtz, Sven-Holger January 2005 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2005
9

Role of IGF-I in ovine fetal and placental growth and development /

Lok, Fong. January 1998 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Obstetrics and Gynaecology, 1999? / Bibliography: p. 190-234.
10

Insulin-like growth factor-I in tissue regeneration and growth control

Edwall, Dan. January 1993 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1993. / Added t.p. with thesis statement inserted. Includes bibliographical references.

Page generated in 0.0765 seconds