• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MIDB : um modelo de integração de dados biológicos

Perlin, Caroline Beatriz 29 February 2012 (has links)
Made available in DSpace on 2016-06-02T19:05:56Z (GMT). No. of bitstreams: 1 4370.pdf: 1089392 bytes, checksum: 82daa0e51d37184f8864bd92d9342dde (MD5) Previous issue date: 2012-02-29 / In bioinformatics, there is a huge volume of data related to biomolecules and to nucleotide and amino acid sequences that reside (in almost their totality) in several Biological Data Bases (BDBs). For a specific sequence, there are some informational classifications: genomic data, evolution-data, structural data, and others. Some BDBs store just one or some of these classifications. Those BDBs are hosted in different sites and servers, with several data base management systems with different data models. Besides, instances and schema might have semantic heterogeneity. In such scenario, the objective of this project is to propose a biological data integration model, that adopts new schema integration and instance integration techniques. The proposed integration model has a special mechanism of schema integration and another mechanism that performs the instance integration (with support of a dictionary) allowing conflict resolution in the attribute values; and a Clustering Algorithm is used in order to cluster similar entities. Besides, a domain specialist participates managing those clusters. The proposed model was validated through a study case focusing on schema and instance integration about nucleotide sequence data from organisms of Actinomyces gender, captured from four different data sources. The result is that about 97.91% of the attributes were correctly categorized in the schema integration, and the instance integration was able to identify that about 50% of the clusters created need support from a specialist, avoiding errors on the instance resolution. Besides, some contributions are presented, as the Attributes Categorization, the Clustering Algorithm, the distance functions proposed and the proposed model itself. / Na bioinformática, existe um imenso volume de dados sendo produzidos, os quais estão relacionados a sequências de nucleotídeos e aminoácidos que se encontram, em quase a sua totalidade, armazenados em Bancos de Dados Biológicos (BDBs). Para uma determinada sequência existem algumas classificações de informação: dados genômicos, dados evolutivos, dados estruturais, dentre outros. Existem BDBs que armazenam somente uma ou algumas dessas classificações. Tais BDBs estão hospedados em diferentes sites e servidores, com sistemas gerenciadores de banco de dados distintos e com uso de diferentes modelos de dados, além de terem instâncias e esquemas com heterogeneidade semântica. Dentro desse contexto, o objetivo deste projeto de mestrado é propor um Modelo de Integração de Dados Biológicos, com novas técnicas de integração de esquemas e integração de instâncias. O modelo de integração proposto possui um mecanismo especial de integração de esquemas, e outro mecanismo que realiza a integração de instâncias de dados (com um dicionário acoplado) permitindo resolução de conflitos nos valores dos atributos; e um Algoritmo de Clusterização é utilizado, com o objetivo de realizar o agrupamento de entidades similares. Além disso, o especialista de domínio participa do gerenciamento desses agrupamentos. Esse modelo foi validado por meio de um estudo de caso com ênfase na integração de esquemas e integração de instâncias com dados de sequências de nucleotídeos de genes de organismos do gênero Actinomyces, provenientes de quatro diferentes fontes de dados. Como resultado, obteve-se que aproximadamente 97,91% dos atributos foram categorizados corretamente na integração de esquemas e a integração de instâncias conseguiu identificar que aproximadamente 50% dos clusters gerados precisam de tratamento do especialista, evitando erros de resolução de entidades. Além disso, algumas contribuições são apresentadas, como por exemplo a Categorização de Atributos, o Algoritmo de Clusterização, as funções de distância propostas e o modelo MIDB em si.

Page generated in 0.0898 seconds