• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SOI Based Integrated-Optic Microring Resonators for Biomedical Sensing Applications

Mangal, Nivesh January 2012 (has links) (PDF)
Integrated Silicon Photonics has emerged as a powerful platform in the last two decades amongst high-bandwidth technologies, particularly since the adop- tion of CMOS compatible silicon-on-insulator(SOI) substrates. Microring res- onators are one of the fundamental blocks on a photonic integrated circuit chip o ering versatility in varied applications like sensing, optical bu ering, ltering, loss measurements, lasing, nonlinear e ects, understanding cavity optomechanics etc. This thesis covers the design and modeling of microring resonators for biosensing applications. The two applications considered are : homogeneous biosensing and wrist pulse pressure monitoring. Also, the designs have been used to fabricate ring resonator device using three different techniques. The results obtained through characterization of these devices are presented. Following are the observations made in lieu of this: 1) Design modeling and analysis - The analysis of ring resonator requires the study of both the straight and bent waveguide sections. Both rib and strip waveguide geometries have been considered for constructing the device as a building block by computing their respective eigen modes for both quasi-TE and quasi-TM polarizations. The non-uniform evanescent coupling between the straight and curved waveguide has been estimated using coupled mode theory. This method provided in estimating the quality-factor and free spec- tral range (FSR) of the ring-resonator. A case for optimizing the waveguide gap in the directional coupler section of a ring resonator has been presented for homogeneous biosensing application. On similar lines, a model of applying ring resonator for arterial pulse-pressure measurement has been analyzed. The results have been obtained by employing FD-BPM and FDTD including semi- vectorial eigen mode solutions to evaluate the spectral characteristics of ring resonator. The modeling and analytical results are supported by commercial software tools (RSoft). 2) Fabrication and Characterization - For the fabrication, we employ the design of ring resonator of radius 20 m on SOI substrate with two different waveguide gaps of 350 and 700 nm. Three different process sows have been used for fabricating the same device. The rst technique involved using negative e-beam resist HSQ which after exposure becomes SiO2, acts as a mask for Reactive-Ion Etching (RIE); helping in eliminating an additional step. The second technique involved the use of positive e-beam resist, PMMA for device patterning followed by metal deposition with lift-o . The third tech- nique employed was Focussed Ion-beam (FIB) which is resist-less patterning by bombarding Ga+ ions directly onto the top surface of the wafer with the help of a GDS le. The characterization process involved estimation of loss and observing the be- havior of optical elds in the device around the wavelength of 1550 nm using near-field scanning optical microscopy (NSOM) measurement. The estimation of roughness-induced losses has been made by performing Atomic Force Microscopy (AFM) measurements. In summary, the thesis presents novel design and analysis of SOI based microring resonators for homogeneous biosensing and wrist pulse pressure sensing applications. Also, the fabrication and characterization of 20 m radius ring- resonator with 500 500 nm rib cross-section is presented. Hence, this study brings forth several practical issues concerning application of ring resonators to biosensing applications.
2

Étude experimentale de l'intégration d'un systèm de distribution quantique de clé à variables continues sur un circuit optique en silicium / Experimental study of the integration of continuous-variable quantum key distribution into a silicon photonics device

Persechino, Mauro 19 December 2017 (has links)
Les évolutions récentes de la cryptographie quantique ont permis de proposer sur le marché des appareils de distribution quantique de clé secrète (QKD). Ceci est obtenu en utilisant soit des variables discrètes et des compteurs de photons (DV), soit des variables continues et des systèmes de détection cohérente (CV). Les avancées technologiques s'orientent maintenant vers la réalisation de dispositifs plus petits, moins chers, et plus commodes à utiliser.L'objectif de cette thèse est de mettre en oeuvre un protocole CV-QKD sur un circuit optique intégré en silicium, en utilisant une modulation Gaussienne d'états cohérents. Deux approches sont utilisées: dans la première l'émetteur Alice et le récepteur Bob sont sur le même circuit photonique (chip) pour une validation de principe, et dans la deuxième ils sont séparés.Les valeurs mesurées des paramètres de la communication permettent d'échanger une clé secrète. / During recent years there have been significant developments in quantum cryptography, bringing quantum key distribution (QKD) devices on the market. This can be done by using either discrete variables (DV) and photon counting, or continuous variables (CV) and coherent detection. Current technological evolutions are now aiming at developing smaller, cheaper and more user-friendly devices.This work focuses on the implementation of CV-QKD using silicon photonics techniques, which provide a high degree of integration. This is exploited to build an on-chip realization of a cryptographic protocol, using Gaussian modulation of coherent states. Two different approaches have been used, first by physically implementing the sender (Alice) and the receiver (Bob) on the same chip for validation purposes, and then by having them onto two separate chips. The measured communication parameters give the possibility to extract a secret key

Page generated in 0.1109 seconds