• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model extraction of a paddle in plastic surface-mount RF-IC packages

Sundberg, Garth 17 February 2000 (has links)
Plastic packaging is a cost-effective solution for housing RF and microwave integrated circuits in low cost communication devices. While enabling low cost packaging of integrated circuits, plastic packages including the circuit ground patch (paddle) inside the package can have a significant parasitic effect on circuit performance. The purpose of this thesis is to develop accurate broadband models and associated extraction procedures for the paddle in plastic surface-mount RF-IC packages. Availability of package models will help the RF design engineer to include the packaging effects directly during the circuit design phase. In this thesis a new lumped element equivalent circuit model for the ground paddle inside a plastic package is presented. The ground paddle is characterized by planar full-wave electromagnetic simulation as well as by measurement of an equivalent paddle test structure. To de-embed the effects of the measurement probes, several test structures are designed. The equivalent circuit parameters for the paddle in a general symmetric 2n-pin plastic package are extracted from a set of measured or simulated two-port scattering parameters. To illustrate the modeling approach, the response of the paddle model for a four-pin and eight-pin plastic package is shown and found to be in good agreement with the measured and simulated data over a broad frequency range extending beyond 5 GHz. Finally, the extraction of the equivalent circuit model of the paddle through the package lead-frame is demonstrated. / Graduation date: 2000
2

Computer simulation of IC packaging effects by FDTD method.

January 1998 (has links)
by Ng Chi-Keung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 127-134). / Abstract also in Chinese. / Abstract --- p.2 / 摘要 --- p.3 / Acknowledgements --- p.4 / Chapter Chapter 1 --- Introduction --- p.7 / Chapter Chapter 2 --- Packaging Effects of Integrated Circuits --- p.9 / Chapter 2.1 --- The Structure of the IC Package --- p.9 / Chapter 2.2 --- Microstrip Discontinuities --- p.11 / Chapter Chapter 3 --- The Finite-Difference Time-Domain Method --- p.19 / Chapter 3.1 --- Basic Theory --- p.19 / Chapter 3.2 --- Stability Criterion --- p.25 / Chapter 3.3 --- Formulation of Source --- p.30 / Chapter A. --- Source Function --- p.30 / Chapter (i) --- Sinusoidal --- p.30 / Chapter (ii) --- Gaussian Pulse --- p.31 / Chapter B. --- Source Realization --- p.36 / Chapter (i) --- Electric Field Source --- p.36 / Chapter (ii) --- Lumped Source --- p.38 / Chapter (iii) --- Current Source --- p.40 / Chapter C. --- Source Placement --- p.41 / Chapter 3.4 --- Parameter Extraction --- p.42 / Chapter A. --- Voltage and Current --- p.42 / Chapter B. --- Characteristic Impedance --- p.44 / Chapter C. --- Effective Dielectric Constant --- p.45 / Chapter D. --- Scattering Parameters --- p.46 / Chapter 3.5 --- Termination and Boundary Treatment --- p.48 / Chapter A. --- Perfect Electric Conductor (PEC) --- p.48 / Chapter B. --- Perfect Magnetic Conductor (PMC) --- p.49 / Chapter C. --- Interface between Two Materials --- p.50 / Chapter 3.6 --- Perfectly Matched Layer (PML) --- p.54 / Chapter A. --- Theory of PML in Three Dimensions --- p.56 / Chapter B. --- Incorporation of PML as Absorbing Boundary Condition (ABC) --- p.65 / Chapter C. --- Discretization of Maxwell's Equations in PML --- p.73 / Chapter 3.7 --- Flowcharts --- p.75 / Chapter A. --- Free Space Radiation by a Dipole Antenna --- p.77 / Chapter B. --- Parameters of a Microstrip Line --- p.79 / Chapter C. --- Scattering Parameters of Planar Network --- p.85 / Chapter 3.8 --- Summary --- p.87 / Chapter Chapter 4 --- Effects of Ground Via Allocation --- p.88 / Chapter 4.1 --- Introduction --- p.88 / Chapter 4.2 --- Simulation and Experimental Results --- p.91 / Chapter 4.3 --- Equivalent Circuit Modelling --- p.108 / Chapter 4.4 --- Summary --- p.124 / Chapter Chapter 5 --- Conclusions --- p.125 / Chapter Chapter 6 --- Recommendation for Future Work --- p.126 / References --- p.127 / Publication --- p.134

Page generated in 0.0733 seconds