Spelling suggestions: "subject:"integrodifferential aquation"" "subject:"integrodifferential cquation""
1 |
An Integrodifferential Equation Modeling 1-D Swarming BehaviorLeverentz, Andrew 01 May 2008 (has links)
We explore the behavior of an integrodifferential equation used to model one-dimensional biological swarms. In this model, we assume the motion of the swarm is determined by pairwise interactions, which in a continuous setting corresponds to a convolution of the swarm density with a pairwise interaction kernel. For a large class of interaction kernels, we derive conditions that lead to solutions which spread, blow up, or reach a steady state. For a smaller class of interaction kernels, we are able to make more quantitative predictions. In the spreading case, we predict the approximate shape and scaling of a similarity profile, as well as the approximate behavior at the endpoints of the swarm (via solutions to a traveling wave problem). In the blow up case, we derive an upper bound for the time to blow up. In the steady state case, we use previous results to predict the equilibrium swarm density. We support our predictions with numerical simulations. We also consider an extension of the original model which incorporates external forces. By analyzing and simulating particular cases, we determine that the addition of an external force can qualitatively change the behavior of the system.
|
2 |
Numerical solutions for a class of singular integrodifferential equationsChiang, Shihchung 06 June 2008 (has links)
In this study, we consider numerical schemes for a class of singular integrodifferential equations with a nonatomic difference operator. Our interest in this particular class has been motivated by an application in aeroelasticity. By applying nonconforming finite element methods, we are able to establish convergence for a semi-discrete scheme. We use an ordinary differential equation solver for the semi-discrete scheme and then improve the result by using a fully discretized scheme. We report our numerical findings and comment on the rates of convergence. / Ph. D.
|
3 |
Singulární počáteční úloha pro obyčejné diferenciální a integrodiferenciální rovnice / Singular Initial Value Problem for Ordinary Differential and Integrodifferential EquationsArchalousová, Olga January 2011 (has links)
The thesis deals with qualitative properties of solutions of singular initial value problems for ordinary differential and integrodifferential equations which occur in the theory of linear and nonlinear electrical circuits and the theory of therminionic currents. The research is concentrated especially on questions of existence and uniqueness of solutions, asymptotic estimates of solutions and modications of Adomian decomposition method for singular initial problems. Solution algoritms are derived for scalar differential equations of Lane-Emden type using Taylor series and modication of the Adomian decomposition method. For certain classes of nonlinear of integrodifferential equations asymptotic expansions of solutions are constructed in a neighbourhood of a singular point. By means of the combination of Wazewski's topological method and Schauder xed-point theorem there are proved asymptotic estimates of solutions in a region which is homeomorphic to a cone having vertex coinciding with the initial point. Using Banach xed-point theorem the uniqueness of a solution of the singular initial value problem is proved for systems of integrodifferential equations of Volterra and Fredholm type including implicit systems. Moreover, conditions of continuous dependence of a solution on a parameter are determined. Obtained results are presented in illustrative examples.
|
Page generated in 0.1456 seconds