• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 16
  • 14
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A genetic screen to isolate Lariat peptide inhibitors of protein function

Barreto, Kris 03 May 2010
<p>Functional genomic analyses provide information that allows hypotheses to be formulated on protein function. These hypotheses, however, need to be validated using reverse genetic approaches, which are difficult to perform on a large scale and in diploid organisms. To address this problem, we developed a genetic screen to rapidly isolate lariat peptides that function as trans dominant inhibitors of protein function.</p> <p>We engineered intein proteins to genetically produce lariats. A lariat consists of a lactone peptide covalently attached to a linear peptide. Cyclizing peptides with a lactone bond imposes a constraint even within the reducing environment found inside of cells. The covalently attached linear peptide provides a site for fusing protein moieties. We fused a transcriptional activation domain to a combinatorial lactone peptide, which allowed combinatorial lariat libraries to be screened for protein interactions using the yeast two-hybrid assay.</p> <p>We confirmed that the intein processed in yeast using Western blot analysis. A chemoselective ring opening of the lactone bond with heavy water, followed by mass spectrometry analysis showed that ~ 44% of purified lariat contained an intact lactone bond. To improve the stability of the lactone bond, we introduced mutations into the engineered intein and analyzed their processing and stability by mass spectrometery. Several mutations were identified that increased the amount of intact lariat.</p> <p>Combinatorial libraries of lactone peptides were generated and screened using the yeast-two-hybrid interaction trap. Lactone cyclic peptides that bound to a number of different targets including LexA, Jak2, and Riz1 were isolated. A lactone cyclic peptide isolated against the bacterial repressor protein LexA was characterized. LexA regulates bacterial SOS response and LexA mutants that cannot undergo autoproteolyis make bacteria more sensitive to, and inhibit resistance against cytotoxic reagents. The anti-LexA lariat interacted with LexA with a dissociation constant of 37 µM by surface plasmon resonance. The lactone constraint was determined to be required for the interaction of the anti-LexA L2 lariat with LexA in the yeast-two-hybrid assay. Alanine scanning showed that only two amino acids (G8 and E9) in the anti-LexA L2 sequence (1-SRSWDLPGEY-10) were not required for the interaction with LexA. The interaction of the anti-LexA lariat with LexA in vivo was confirmed by chromatin precipitation of the lactone peptide-LexA-DNA complex. The anti-microbial properties of the anti-LexA lariat were also characterized. The anti-LexA lariat potentiated the activity of a DNA damaging agent mitomycin C and inhibited the cleavage of LexA, preventing the SOS response pathway from being activated.</p> <p>In summary, lariats possess desired traits for characterizing the function and therapeutic potential of proteins. The ability to genetically and chemically synthesize lariats allows the lariat transcription activation domain to be replaced by other peptide and chemical moieties such as affinity tags, fluorescent molecules, localization sequences, et cetera, which give them advantages over head to tail cyclized peptides, which have no free end to attach moieties.</p>
12

A genetic screen to isolate Lariat peptide inhibitors of protein function

Barreto, Kris 03 May 2010 (has links)
<p>Functional genomic analyses provide information that allows hypotheses to be formulated on protein function. These hypotheses, however, need to be validated using reverse genetic approaches, which are difficult to perform on a large scale and in diploid organisms. To address this problem, we developed a genetic screen to rapidly isolate lariat peptides that function as trans dominant inhibitors of protein function.</p> <p>We engineered intein proteins to genetically produce lariats. A lariat consists of a lactone peptide covalently attached to a linear peptide. Cyclizing peptides with a lactone bond imposes a constraint even within the reducing environment found inside of cells. The covalently attached linear peptide provides a site for fusing protein moieties. We fused a transcriptional activation domain to a combinatorial lactone peptide, which allowed combinatorial lariat libraries to be screened for protein interactions using the yeast two-hybrid assay.</p> <p>We confirmed that the intein processed in yeast using Western blot analysis. A chemoselective ring opening of the lactone bond with heavy water, followed by mass spectrometry analysis showed that ~ 44% of purified lariat contained an intact lactone bond. To improve the stability of the lactone bond, we introduced mutations into the engineered intein and analyzed their processing and stability by mass spectrometery. Several mutations were identified that increased the amount of intact lariat.</p> <p>Combinatorial libraries of lactone peptides were generated and screened using the yeast-two-hybrid interaction trap. Lactone cyclic peptides that bound to a number of different targets including LexA, Jak2, and Riz1 were isolated. A lactone cyclic peptide isolated against the bacterial repressor protein LexA was characterized. LexA regulates bacterial SOS response and LexA mutants that cannot undergo autoproteolyis make bacteria more sensitive to, and inhibit resistance against cytotoxic reagents. The anti-LexA lariat interacted with LexA with a dissociation constant of 37 µM by surface plasmon resonance. The lactone constraint was determined to be required for the interaction of the anti-LexA L2 lariat with LexA in the yeast-two-hybrid assay. Alanine scanning showed that only two amino acids (G8 and E9) in the anti-LexA L2 sequence (1-SRSWDLPGEY-10) were not required for the interaction with LexA. The interaction of the anti-LexA lariat with LexA in vivo was confirmed by chromatin precipitation of the lactone peptide-LexA-DNA complex. The anti-microbial properties of the anti-LexA lariat were also characterized. The anti-LexA lariat potentiated the activity of a DNA damaging agent mitomycin C and inhibited the cleavage of LexA, preventing the SOS response pathway from being activated.</p> <p>In summary, lariats possess desired traits for characterizing the function and therapeutic potential of proteins. The ability to genetically and chemically synthesize lariats allows the lariat transcription activation domain to be replaced by other peptide and chemical moieties such as affinity tags, fluorescent molecules, localization sequences, et cetera, which give them advantages over head to tail cyclized peptides, which have no free end to attach moieties.</p>
13

Heterologous Protein Expression: Production of Tissue Plasminogen Activator in Pichia Pastoris and Probing Intein Activity on Elastin-Like Polypeptide Aggregates

Xie, Limin 12 1900 (has links)
<p> Tissue plasminogen activator (tPA), is commonly used as thrombolytic agent for the treatment of various cardiovascular diseases. This thesis constitutes the first report on cloning and expression of tPA in the methylotrphic yeast Pichia pastoris. </p> <p> The tPA gene was first cloned into an E. coli/Pichia shuttle plasmid and then integrated into the Pichia genome. The recombinant Pichia was able to express tPA intracellularly, under methanol induction. The tPA produced by the Pichia had a similar molecular weight as native tPA and it had serine protease activity. At the shake flask scale, the recombinant Pichia strain was able to produce twice as much tPA as reported for E. coli. </p> <p> Elastin-like polypeptides (ELP) are proteins that have a peculiar characteristic: they are able to undergo a reversible inverse phase transition temperature within a very narrow temperature range. On a second aspect of heterologous protein, a construct composed of thioredoxin-intein-ELP was used to provide direct evidence, for the first time, that protein folding and activity, in this case the intein, was maintained when the tripartite fusion was present in the aggregated state. These results are important, since they provide the necessary degree of confidence to stimulate future work directed towards expression and maintenance of proper folding of aggregation-prone proteins when expressed in-vivo E. Coli as ELP directed inclusion bodies. It is also shown that the intein-ELP system may be a very interesting system to be used as a drug delivery vehicle. </p> / Thesis / Master of Applied Science (MASc)
14

The conditional protein splicing of alpha-sarcin: a model for inducible assembly of protein toxins in vivo.

Alford, Spencer C. 09 August 2007 (has links)
Conditional protein splicing (CPS) is an intein-mediated post-translational modification. Inteins are intervening protein elements that autocatalytically excise themselves from precursor proteins to ligate flanking protein sequences, called exteins, with a native peptide bond. Artificially split inteins can mediate the same process by splicing proteins in trans, when intermolecular reconstitution of split intein fragments occurs. An established CPS model utilizes an artificially split Saccharomyces cerevisiae intein, called VMA. In this model, VMA intein fragments are fused to the heterodimerization domains, FKBP and FRB, which selectively form a complex with the immunosuppressive drug, rapamycin. Treatment with rapamycin, therefore, heterodimerizes FKBP and FRB, and triggers trans-splicing activity by proximity association of intein fragments. Here, we engineered a CPS model to assemble inert fragments of the potent fungal ribotoxin, alpha (α)-sarcin, in vivo. Using this model, we demonstrate rapamycin-dependent protein splicing of α-sarcin fragments and a corresponding induction of cytotoxicity in HeLa cells. We further show that permissive extein context and incubation temperature are critical factors regulating the splicing of active target proteins. Ultimately, this technology could have potential applications in the fields of developmental biology and anti-tumour therapy.
15

The conditional protein splicing of alpha-sarcin: a model for inducible assembly of protein toxins in vivo.

Alford, Spencer C. 09 August 2007 (has links)
Conditional protein splicing (CPS) is an intein-mediated post-translational modification. Inteins are intervening protein elements that autocatalytically excise themselves from precursor proteins to ligate flanking protein sequences, called exteins, with a native peptide bond. Artificially split inteins can mediate the same process by splicing proteins in trans, when intermolecular reconstitution of split intein fragments occurs. An established CPS model utilizes an artificially split Saccharomyces cerevisiae intein, called VMA. In this model, VMA intein fragments are fused to the heterodimerization domains, FKBP and FRB, which selectively form a complex with the immunosuppressive drug, rapamycin. Treatment with rapamycin, therefore, heterodimerizes FKBP and FRB, and triggers trans-splicing activity by proximity association of intein fragments. Here, we engineered a CPS model to assemble inert fragments of the potent fungal ribotoxin, alpha (α)-sarcin, in vivo. Using this model, we demonstrate rapamycin-dependent protein splicing of α-sarcin fragments and a corresponding induction of cytotoxicity in HeLa cells. We further show that permissive extein context and incubation temperature are critical factors regulating the splicing of active target proteins. Ultimately, this technology could have potential applications in the fields of developmental biology and anti-tumour therapy.
16

Construction of molecular tools through protein excision and splicing

Tunney, Shannon Nicole 24 May 2022 (has links)
With the explosion of protein tools as popular platforms for discovery and therapeutics, we see greater need for regulator systems that work congruently within these frameworks, especially safe and effective tools that can be implemented in humans. To this end, we endeavor to create orthogonal, precise and flexible protein modulators that can be easily employed to control protein tools with little need to iterate design for novel contexts. Hepatitis C NS3 protease is employed as a stabilizable linker between protein domains, enabling control over protein localization with FDA approved anti-viral drugs. The power of this tool is demonstrated by controlling gene expression through the controlled tether and release of a transcription factor. Inteins have already been employed to modulate proteins in synthetic contexts, however we observe that natural systems lack the avenues of control necessary to make them indispensable. We employ existing protein tools to construct a system of modular protein association, as well as drug and light inducible schema that reveal gaps in our knowledge of how to repurpose inteins in vivo. Despite this, we use inteins in the construction of a novel cargo delivery platform based on the fusogenic properties of the viral envelope glycoprotein from Vesicular stomatitis virus (VSV-G). We confirm reduced tropism of cargo delivery based on an intein lock-and-key mechanism that has implications for both biosafety as well as targeted delivery in vivo of natively folded proteins to target cells. / 2024-05-23T00:00:00Z
17

Recent Advances in Self-Cleaving Intein Tag Technology

Coolbaugh, Michael J., Jr 15 May 2015 (has links)
No description available.
18

Control of Intein-Mediated Self-Cleaving Tag for Recombinant Protein Purification

Han, Tzu-Chiang 08 August 2016 (has links)
No description available.
19

Studies of Split Intein-Mediated Self-Cleaving Tag for Protein Purification

Zhai, Yujing January 2016 (has links)
No description available.
20

Split Intein Applications for Downstream Purification and Protein Conjugation

Galiardi, Jackelyn 05 October 2021 (has links)
No description available.

Page generated in 0.0333 seconds