• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and implementation of a bristle bot swarm system

Pozo Fortunić, Juan Edmundo 06 February 2017 (has links)
Swarm robotics focuses on the study and development of robot systems containing a large number of agents that interact with each other in a collective behaviour in order to achieve tasks or overcome obstacles. Bristlebots are vibration-driven mobile robots. They are characterized by small size, high speed, simple design and low costs for production and application – qualities which are advantageous for agents of swarm robotic systems. However, most studies have been developed over systems with no control or systems with two or more actuators. The aim of this master thesis is the development of a bristle based robot agent for a swarm robotics microsystem with units for locomotion, sensing, data processing, control, communication and energy storage. New approaches in modelling and development of swarm agents are given, and a robot prototype is presented. The robot is driven by a single DC motor and uses a bristle system to create locomotion. It should be noted, that within the system design, considerations for the size, weight and minimalist architecture are taken. Experiments are presented and the system’s capabilities for displacement, velocity and trajectory generation are analysed. While the parallel velocity maintains a positive magnitude in both motor rotation directions, the rotation speed and transversal velocity of the robot have opposite directions, creating curved trajectories with opposite orientations. In Frequencies up to 210 Hz, the rotation direction of the robot is maintained while the magnitude slightly varies. However, for higher frequencies, the rotation direction of the robot is reversed, maintaining a similar magnitude. The transversal speeds at this frequency range, maintain their direction but are clearly reduced compared to lower frequencies. / Tesis
2

Design and implementation of a bristle bot swarm system

Pozo Fortunić, Juan Edmundo 06 February 2017 (has links)
Swarm robotics focuses on the study and development of robot systems containing a large number of agents that interact with each other in a collective behaviour in order to achieve tasks or overcome obstacles. Bristlebots are vibration-driven mobile robots. They are characterized by small size, high speed, simple design and low costs for production and application – qualities which are advantageous for agents of swarm robotic systems. However, most studies have been developed over systems with no control or systems with two or more actuators. The aim of this master thesis is the development of a bristle based robot agent for a swarm robotics microsystem with units for locomotion, sensing, data processing, control, communication and energy storage. New approaches in modelling and development of swarm agents are given, and a robot prototype is presented. The robot is driven by a single DC motor and uses a bristle system to create locomotion. It should be noted, that within the system design, considerations for the size, weight and minimalist architecture are taken. Experiments are presented and the system’s capabilities for displacement, velocity and trajectory generation are analysed. While the parallel velocity maintains a positive magnitude in both motor rotation directions, the rotation speed and transversal velocity of the robot have opposite directions, creating curved trajectories with opposite orientations. In Frequencies up to 210 Hz, the rotation direction of the robot is maintained while the magnitude slightly varies. However, for higher frequencies, the rotation direction of the robot is reversed, maintaining a similar magnitude. The transversal speeds at this frequency range, maintain their direction but are clearly reduced compared to lower frequencies. / Tesis

Page generated in 0.0692 seconds