• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role de protéines associées au cytosquelette bactérien / Role of proteins associated with the bacterial cytoskeleton

Rueff, Anne-Stéphanie 12 July 2011 (has links)
Le cytosquelette bactérien des homologues d’actine (protéines de la famille MreB) joue un rôle majeur dans la morphogénèse cellulaire. Des homologues de MreB sont retrouvés chez la plupart des espèces bactériennes non sphériques, où ils sont essentiels pour la viabilité cellulaire. Les bactéries à Gram-positif ont généralement plusieurs isoformes. L’organisme modèle Bacillus subtilis en possède trois : MreB, Mbl et MreBH, tous trois impliqués dans la détermination de la forme de la cellule. Le postulat actuel est une organisation, des complexes de synthèse du peptidoglycane, le long des parois latérales par les filaments hélicoïdaux des MreB-like. Cependant, les mécanismes moléculaires et les protéines effectrices impliqués dans cette fonction ne sont pas encore élucidés. Par analogie avec les rôles de l’actine eucaryote, des implications dans d’autres processus cellulaires cruciaux et la présence de partenaires protéiques sont également attendus pour les actines procaryotes. Afin d’explorer les rôles des protéines MreB chez B. subtilis nous avons généré, par des criblages génomiques double hybride chez la levure, un réseau d’interaction protéine-protéine centré sur MreB, Mbl et MreBH. Une vérification systématique et drastique de toutes les interactions obtenues lors des criblages a été réalisée afin d’éliminer les faux positifs. Les interactions identifiées révèlent des liens entre les protéines MreB-like et seize protéines issues de catégories fonctionnelles variées ou de fonction inconnue. Une étude exploratoire a été menée pour huit des protéines partenaires par des approches in silico et in vivo et nous a permis de sélectionner une seule interaction à caractériser plus en détail. Nous nous sommes principalement intéressés à l’interaction physique et directe entre MreB et DapL, une protéine essentielle vraisemblablement impliquée dans la voie de biosynthèse des précurseurs du peptidoglycane, par analogie à DapE d’E. coli. La caractérisation approfondie de DapL a confirmé son essentialité dans la synthèse du peptidoglycane. Bien que l’interaction MreB-DapL ait été confirmée biochimiquement, son rôle biologique exact n’a pas été élucidé. Cependant, nous avons mis en évidence d’autres interactions entre MreB et DapG, LysA et MurE, des enzymes également impliquées dans les étapes précoces de la synthèse du peptidoglycane. L’existence de telles interactions renforce le rôle du cytosquelette MreB de B. subtilis dans l’orchestration des machineries de synthèse de la paroi cellulaire. / Bacterial actin homologues (MreB proteins) play a major role in cell morphogenesis in non-spherical bacteria. The prevailing model postulates that helical, membrane-associated MreB-like filaments organize elongation-specific peptidoglycan-synthesizing complexes along the sidewalls. However, the mechanistic details, as well as the effector proteins of MreBs morphogenetic function, remain to be elucidated. MreB proteins are also involved in DNA segregation, cell polarity, cell motility and, by analogy to eukaryotic actins, possibly in other functions that require the targeting and accurate positioning of proteins and molecular complexes in the cell. Gram-positive bacteria usually have more than one MreB isoform. Our model organism, Bacillus subtilis, has three called MreB, Mbl and MreBH. To explore the roles of the MreB cytoskeleton in B. subtilis, we used genome-wide yeast two-hybrid screens to identify proteins that physically associate with MreB, Mbl and MreBH. Stringent specificity assays were systematically performed to remove false positives and confirm the specificity of all potential interactions identified in the screens. A protein-protein interaction network centered on the three MreBs was generated which includes 16 protein partners. This interaction network provides insights into the links of MreB proteins with proteins belonging to several functional categories as well as proteins of unknown function. An exploratory study was conducted in silico and in vivo for 8 of the partner proteins identified in the network and allowed us to select one interaction for a more in-depth analysis. We next focused in the physical interaction between MreB and DapL, an essential protein presumably involved in the early steps of peptidoglycan biosynthesis. The characterization of DapL confirmed its essential role in cell wall synthesis. The MreB-DapL interaction was confirmed biochemically and we showed that MreB also associates with other proteins involved in the synthesis of the PG precursors (DapG, LysA and MurE). Together, these results suggest that B. subtilis MreB orchestrates the PG biosynthetic cytosolic machineries to achieve and maintain its rod shape.
2

Role de protéines associées au cytosquelette bactérien

Rueff, Anne-Stéphanie 12 July 2011 (has links) (PDF)
Le cytosquelette bactérien des homologues d'actine (protéines de la famille MreB) joue un rôle majeur dans la morphogénèse cellulaire. Des homologues de MreB sont retrouvés chez la plupart des espèces bactériennes non sphériques, où ils sont essentiels pour la viabilité cellulaire. Les bactéries à Gram-positif ont généralement plusieurs isoformes. L'organisme modèle Bacillus subtilis en possède trois : MreB, Mbl et MreBH, tous trois impliqués dans la détermination de la forme de la cellule. Le postulat actuel est une organisation, des complexes de synthèse du peptidoglycane, le long des parois latérales par les filaments hélicoïdaux des MreB-like. Cependant, les mécanismes moléculaires et les protéines effectrices impliqués dans cette fonction ne sont pas encore élucidés. Par analogie avec les rôles de l'actine eucaryote, des implications dans d'autres processus cellulaires cruciaux et la présence de partenaires protéiques sont également attendus pour les actines procaryotes. Afin d'explorer les rôles des protéines MreB chez B. subtilis nous avons généré, par des criblages génomiques double hybride chez la levure, un réseau d'interaction protéine-protéine centré sur MreB, Mbl et MreBH. Une vérification systématique et drastique de toutes les interactions obtenues lors des criblages a été réalisée afin d'éliminer les faux positifs. Les interactions identifiées révèlent des liens entre les protéines MreB-like et seize protéines issues de catégories fonctionnelles variées ou de fonction inconnue. Une étude exploratoire a été menée pour huit des protéines partenaires par des approches in silico et in vivo et nous a permis de sélectionner une seule interaction à caractériser plus en détail. Nous nous sommes principalement intéressés à l'interaction physique et directe entre MreB et DapL, une protéine essentielle vraisemblablement impliquée dans la voie de biosynthèse des précurseurs du peptidoglycane, par analogie à DapE d'E. coli. La caractérisation approfondie de DapL a confirmé son essentialité dans la synthèse du peptidoglycane. Bien que l'interaction MreB-DapL ait été confirmée biochimiquement, son rôle biologique exact n'a pas été élucidé. Cependant, nous avons mis en évidence d'autres interactions entre MreB et DapG, LysA et MurE, des enzymes également impliquées dans les étapes précoces de la synthèse du peptidoglycane. L'existence de telles interactions renforce le rôle du cytosquelette MreB de B. subtilis dans l'orchestration des machineries de synthèse de la paroi cellulaire.
3

Etude structurale et fonctionnelle de la régulation de la compétence et du processus de transformation chez Streptococcus pneumoniae / Structural and fonctionnal study of the competence regulation and the transformation process on Streptococcus pneumoniae

Sanchez, Dyana 09 October 2015 (has links)
La transformation génétique naturelle contribue au maintien et à l'évolution des génomes bactériens, elle constitue pour les bactéries un mécanisme clé pour s'adapter à l'environnement. Elle permet l'intégration d'ADN exogène au sein du chromosome bactérien par recombinaison homologue lors d'un état physiologique particulier de la bactérie appelé compétence. Mon travail de thèse a porté sur la régulation de la compétence chez S. pneumoniae (ComD, ComE) et sur les interactions entre les protéines impliquées dans la prise en charge, le traitement et la recombinaison de l'ADN transformant (DprA, RecA). Chez cette bactérie, l'entrée en compétence est sous le contrôle du système à deux composantes ComD-ComE qui induit la transcription des gènes cibles. DprA est l'une des protéines surexprimée lors de la compétence, elle est très conservée dans le monde bactérien, et participe à la fermeture de la compétence via une interaction directe avec ComE. DprA est également une protéine centrale de la transformation impliquée dans la protection de l'ADN entrant contre les nucléases, et dans le recrutement de la recombinase RecA. L'analyse par SAXS du complexe ComD-ComE, la résolution de la structure cristallographique des domaines REC de ComE, et l'étude des interaction entre ComE et ses régions promotrices ont permis de mieux comprendre la chorégraphie de l'entrée en compétence de S. pneumoniae. En parallèle, nous avons étudié les interactions de SpDprA avec l'ADN et avec RecA. Ces données nous ont permis de proposer un modèle d'interaction entre DprA et RecA chez S. pneumoniae et de proposer un mécanisme de chargement de RecA sur l'ADNsb par DprA. Je me suis également intéressée à DprA de H. pylori en participant à la résolution de la structure 3D de son domaine C-terminal par RMN et en étudiant son interaction avec l'ADNdb. / The natural genetic transformation contributes to the maintenance and the evolution of the genomes in bacteria; it is a key mechanism to adapt to their environment. It allows the integration of exogenous DNA into the bacterial chromosome by homologous recombination during a particular state called competence.My thesis focused on the regulation of the competence state in S. pneumoniae (ComD, ComE), and on the interactions between the proteins involved in the uptake, the processing and recombination of exogenous DNA (DprA, RecA). In this bacterium, the opening of the competence is under the control of the two-component system ComD-ComE, who induces the transcription of target genes. DprA is one of the protein induced during the competence state, it is very conserved into the bacterial kingdom, and is involved in the closure of competence via direct interaction with ComE. DprA is also a key transformation protein involved in processing the incoming DNA, protection against nucleases, and recruitment of the RecA recombinase. SAXS analysis of the ComD-ComE, resolution of the crystallographic structure of ComE REC domain study of the interactions between ComE and its promoter regions allowed us to understand the choreography of competence opening in S. pneumoniae. Meanwhile, we studied spDprA interactions with DNA and with RecA. These data allowed us to propose an interaction model between DprA and RecA in S. pneumoniae and to propose a mechanism for RecA's loading on the ssDNA by DprA. I focused too on H. pylori DprA participating on the resolution of the 3D structure of the C-terminal domain by NMR and studying its interaction with the dsDNA.
4

Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”

Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
5

Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”

Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.

Page generated in 0.1521 seconds