• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells

Habas, Khaled S.A., Shang, Lijun 09 December 2018 (has links)
Yes / Alterations of Endothelial cells (ECs) play a critical role in different pathogenesis of many serious human diseases, and dysfunction of the vascular endothelium is an indicator for human disorders. Endothelial dysfunction is considered to be an early indicator for atherosclerosis, which is characterised by overexpression of adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Hydrogen peroxide (H2O2) released via neutrophils is an important mediator of endothelial cell function. Ambient production of superoxide anion (O2−) and subsequently H2O2 at low levels is critical for regulating endothelial cell functions and proliferation. In this study, we investigated the effects of H2O2 on the expression of adhesion molecules VCAM-1 and ICAM-1 in cultured human umbilical vein endothelial cells (HUVECs). Intracellular superoxide anion production was detected by using p-Nitro Blue Tetrazolium (NBT) assay. Our results showed that administration of 100μM of H2O2 on HUVECs for 2, 6, 12 and 24 h induced a time-dependent increase in ICAM-1 and VCAM-1 mRNA and protein expression levels with a significant increase observed from 6 h. HUVECs exposed to H2O2 exhibit increased O2−, suggesting that H2O2 induced oxidative stress may be a reasonable for atherosclerosis. This increase can be reduced by the flavonoid, N-acetyl cysteine (NAC). The modulation of endothelial cell function through this mechanism may underlie the contribution of H2O2 to the development of vascular disease.

Page generated in 0.0869 seconds