Spelling suggestions: "subject:"binterest rate options"" "subject:"cinterest rate options""
1 |
Pricing, hedging and testing risky assets in financial marketsRen, Yu 19 June 2008 (has links)
State price density (SPD) and stochastic discount factor (SDF) are important elements
in asset pricing. In this thesis, I first propose to use projection pursuit regression
(PPR) and local polynomial regression (LPR) to estimate the SPD of interest rates nonparametrically.
By using a similar approach, I also estimate the delta values in the interest rate options and discusses how to delta-hedge these options. Unlike SPD measured in a risk-neutral economy, SDF is implied by an asset pricing model. It displays which prices are reasonable given the returns in the current period. Hansen and Jagannathan (1997) develop the Hansen-Jagannathan distance (HJ-distance) to measure pricing errors produced by SDF. While the HJ-distance has several desirable properties, Ahn and Gadarowski (2004) find that the specification test based on the HJ-distance overrejects correct models too severely in commonly used sample size to provide a valid test. This thesis proposes to improve the finite sample properties of the HJ-distance test by applying the shrinkage method (Ledoit and Wolf, 2003) to compute its weighting matrix. / Thesis (Ph.D, Economics) -- Queen's University, 2008-06-19 00:00:55.996
|
2 |
Arbitrage-free market models for interest rate options and future options: the multi-strike caseYe, Hui, Ellanskaya, Anastasia January 2010 (has links)
This work mainly studies modeling and existence issues for martingale models of option markets with one stock and a collection of European call options for one fixed maturity and infinetely many strikes. In particular, we study Dupire's and Schweizer-Wissel's models, especially the latter one. These two types of models have two completely different pricing approachs, one of which is martingale approach (in Dupire's model), and other one is a market approach (in Schweizer-Wissel's model). After arguing that Dupire's model suffers from the several lacks comparing to Schweizer-Wissel's model, we extend the latter one to get the variations for the case of options on interest rate indexes and futures options. Our models are based on the newly introduced definitions of local implied volatilities and a price level proposed by Schweizer and Wissel. We get explicit expressions of option prices as functions of the local implied volatilities and the price levels in our variations of models. Afterwards, the absence of the dynamic arbitrage in the market for such models can be described in terms of the drift restrictions on the models' coefficients. Finally we demonstrate the application of such models by a simple example of an investment portfolio to show how Schweizer-Wissel's model works generally.
|
3 |
Yield Curve Constructions / Konstrukce výnosové křivkyAntas, Vilém January 2016 (has links)
The goal of this thesis is to analyze the mathematical apparatus of the most widespread methods used for the yield curves construction. It aims to introduce not only the various of construction models but also to describe the whole process of creation, while discussing the advantages and disadvantage of individual methods. The first chapter focus on the general theory and the use of the term structure of interest rates in practice. The second part deals with the construction process itself and describes the most frequently used methods. The last chapter then shows the real application of selected methods on given data set and the use of the constructed yield curves for interest rate derivative valuation too.
|
4 |
Avaliação de derivativos de taxas de juros : uma aplicação do Modelo CIR sobre opções de IDIDalmagro, Lucas Bassani January 2015 (has links)
Este trabalho tem por objetivo principal aplicar o modelo de precificação de opções de taxas de juros proposto por Barbachan e Ornelas (2003), com base nos modelos de taxa de juro e avaliação de opções de Cox, Ingerssol e Ross (1985), para avaliação de opções de compra sobre o Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI), negociadas na BM&FBovespa. Para estimação dos parâmetros deste modelo, foi empregado o método de Máxima Verossimilhança. Neste contexto, também fez-se uso da fórmula de precificação de opções proposta por Black (1976), adaptada para o mercado de derivativos brasileiros, conforme implementação verificada no trabalho de Gluckstern et al. (2002). Tal aplicação torna-se interessante, pois este modelo é amplamente utilizado pelo mercado brasileiro para avaliação de opções sobre o IDI. De forma a verificar a aderência dos preços teóricos gerados pelos modelos, em comparação aos preços de mercado, métricas de erro foram empregadas. De forma geral, nossos resultados mostraram que ambos os modelos apresentam erros sistemáticos de precificação, onde o modelo CIR subavalia os prêmios das opções e o modelo de Black superprecifica. No entanto, bons resultados foram encontrados ao avaliarmos opções in-the-money e out-of-money com o modelo de Black. / This work aims to apply the interest rate option pricing model proposed by Barbachan and Ornelas (2003), based on the interest rate model and option pricing model developed by Cox, Ingersoll and Ross (1985), to evaluate call options on the 1 day Brazilian Interfinancial Deposits Index - IDI, traded at BM&FBovespa. The Maximum Likelihood method was applied to estimate the model parameters. In this context, the option pricing formula proposed by Black (1976), adapted for the Brazilian derivative Market, was also used, according implementation verified in Gluckstern et al. (2002). This application becomes interesting because this model is widely used by the Brazilian Market to evaluate options on IDI. In order to verify the adherence of theoretical prices generated by the models, in comparison to the Market prices, error metrics were applied. In general, our results pointed out that both models presented systematic pricing errors, in which the CIR model underestimates the option prices and Black’s model overestimates. However, good results were found on the evaluation of options in-the-money and out-of-money with the Black’s Model.
|
5 |
Avaliação de derivativos de taxas de juros : uma aplicação do Modelo CIR sobre opções de IDIDalmagro, Lucas Bassani January 2015 (has links)
Este trabalho tem por objetivo principal aplicar o modelo de precificação de opções de taxas de juros proposto por Barbachan e Ornelas (2003), com base nos modelos de taxa de juro e avaliação de opções de Cox, Ingerssol e Ross (1985), para avaliação de opções de compra sobre o Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI), negociadas na BM&FBovespa. Para estimação dos parâmetros deste modelo, foi empregado o método de Máxima Verossimilhança. Neste contexto, também fez-se uso da fórmula de precificação de opções proposta por Black (1976), adaptada para o mercado de derivativos brasileiros, conforme implementação verificada no trabalho de Gluckstern et al. (2002). Tal aplicação torna-se interessante, pois este modelo é amplamente utilizado pelo mercado brasileiro para avaliação de opções sobre o IDI. De forma a verificar a aderência dos preços teóricos gerados pelos modelos, em comparação aos preços de mercado, métricas de erro foram empregadas. De forma geral, nossos resultados mostraram que ambos os modelos apresentam erros sistemáticos de precificação, onde o modelo CIR subavalia os prêmios das opções e o modelo de Black superprecifica. No entanto, bons resultados foram encontrados ao avaliarmos opções in-the-money e out-of-money com o modelo de Black. / This work aims to apply the interest rate option pricing model proposed by Barbachan and Ornelas (2003), based on the interest rate model and option pricing model developed by Cox, Ingersoll and Ross (1985), to evaluate call options on the 1 day Brazilian Interfinancial Deposits Index - IDI, traded at BM&FBovespa. The Maximum Likelihood method was applied to estimate the model parameters. In this context, the option pricing formula proposed by Black (1976), adapted for the Brazilian derivative Market, was also used, according implementation verified in Gluckstern et al. (2002). This application becomes interesting because this model is widely used by the Brazilian Market to evaluate options on IDI. In order to verify the adherence of theoretical prices generated by the models, in comparison to the Market prices, error metrics were applied. In general, our results pointed out that both models presented systematic pricing errors, in which the CIR model underestimates the option prices and Black’s model overestimates. However, good results were found on the evaluation of options in-the-money and out-of-money with the Black’s Model.
|
6 |
Avaliação de derivativos de taxas de juros : uma aplicação do Modelo CIR sobre opções de IDIDalmagro, Lucas Bassani January 2015 (has links)
Este trabalho tem por objetivo principal aplicar o modelo de precificação de opções de taxas de juros proposto por Barbachan e Ornelas (2003), com base nos modelos de taxa de juro e avaliação de opções de Cox, Ingerssol e Ross (1985), para avaliação de opções de compra sobre o Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI), negociadas na BM&FBovespa. Para estimação dos parâmetros deste modelo, foi empregado o método de Máxima Verossimilhança. Neste contexto, também fez-se uso da fórmula de precificação de opções proposta por Black (1976), adaptada para o mercado de derivativos brasileiros, conforme implementação verificada no trabalho de Gluckstern et al. (2002). Tal aplicação torna-se interessante, pois este modelo é amplamente utilizado pelo mercado brasileiro para avaliação de opções sobre o IDI. De forma a verificar a aderência dos preços teóricos gerados pelos modelos, em comparação aos preços de mercado, métricas de erro foram empregadas. De forma geral, nossos resultados mostraram que ambos os modelos apresentam erros sistemáticos de precificação, onde o modelo CIR subavalia os prêmios das opções e o modelo de Black superprecifica. No entanto, bons resultados foram encontrados ao avaliarmos opções in-the-money e out-of-money com o modelo de Black. / This work aims to apply the interest rate option pricing model proposed by Barbachan and Ornelas (2003), based on the interest rate model and option pricing model developed by Cox, Ingersoll and Ross (1985), to evaluate call options on the 1 day Brazilian Interfinancial Deposits Index - IDI, traded at BM&FBovespa. The Maximum Likelihood method was applied to estimate the model parameters. In this context, the option pricing formula proposed by Black (1976), adapted for the Brazilian derivative Market, was also used, according implementation verified in Gluckstern et al. (2002). This application becomes interesting because this model is widely used by the Brazilian Market to evaluate options on IDI. In order to verify the adherence of theoretical prices generated by the models, in comparison to the Market prices, error metrics were applied. In general, our results pointed out that both models presented systematic pricing errors, in which the CIR model underestimates the option prices and Black’s model overestimates. However, good results were found on the evaluation of options in-the-money and out-of-money with the Black’s Model.
|
Page generated in 0.1291 seconds