Spelling suggestions: "subject:"interesterified fato"" "subject:"interesterified fat""
1 |
Effect of High Intensity Ultrasound on the Crystallization Behavior of Interesterified FatsKadamne, Jeta Vijay 01 May 2018 (has links)
The process of partial hydrogenation produces trans fats and the fats that undergo this process are called partially hydrogenated fats (PHF). Clinical studies have shown a strong association between PHF and coronary heart diseases. In 2015 The U.S. Food and Drug Administration removed the Generally recognized as safe or "GRAS" status of PHF. These fats were used in confectionary, margarines, shortenings, doughnuts, cookies, cakes, etc. The PHF serve a function in food by providing a higher shelf life and a desired harder structure due to their higher melting point. Hence, the food industry is currently looking for PHF alternatives which serve the function but have no harmful health effects. One of the alternatives to replace PHF is to use interesterified fats that have a low level of saturation that makes them healthier. However, these new fats are too soft with restricted use in many food applications. In this study, we explored the use of high intensity ultrasound (HIU) to improve the functional properties of interesterified fats and make them harder. Our study showed that HIU formed small crystals in these fats and increased their viscosity. The results from this study on the flavor release from the interesterified fats showed that the physical structure and hence the amount of solid fat in the sample affected its flavor perception. The solid fats had higher flavor perception than the liquid fat samples. The goal of this study is to improve the functionality of the interesterified fats using HIU and understand the flavor release from these fats to make substitution in food products easier.
|
2 |
Formulação de gorduras zero trans para recheio de biscoitos utilizando redes neurais / Formulation of zero trans fats for biscuit fillings using neural networksGandra, Kelly Moreira 17 August 2018 (has links)
Orientador: Daniel Barrera Arellano / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-17T11:56:59Z (GMT). No. of bitstreams: 1
Gandra_KellyMoreira_D.pdf: 1962114 bytes, checksum: b863c0d311a5f84450122b2a375cd93e (MD5)
Previous issue date: 2011 / Resumo: O desafio das indústrias de alimentos na substituição da gordura trans em diversos produtos consiste no desenvolvimento de formulações que apresentem funcionalidade equivalente e viabilidade econômica. A interesterificação química tem-se mostrado a principal alternativa para a obtenção de gorduras plásticas zero
ou low trans. Apesar da evolução tecnológica dos processos de produção das matérias-primas, os métodos convencionais utilizados pelas indústrias alimentícias na formulação de gorduras especiais são demorados e trabalhosos e, além de cálculos, muitos procedimentos de tentativa e erro são necessários. As redes neurais constituem um campo da ciência da computação ligado à inteligência artificial, que tem sido utilizado com sucesso na área de óleos e gorduras. Mediante a dificuldade enfrentada pelas indústrias na etapa de formulação de gorduras, o objetivo deste trabalho foi aplicar a técnica de redes neurais artificiais na formulação de blends zero trans para recheios de biscoito. Foram construídas e treinadas redes neurais do tipo perceptron multicamadas, utilizando três matérias-primas: óleo de soja e duas bases interesterificadas. O treinamento das redes neurais foi realizado utilizando-se como variáveis de saída o conteúdo de gordura sólida e o ponto de fusão de 62 exemplos de blends elaborados com as três matérias-primas e, como variáveis de entrada, a proporção de cada matéria-prima utilizada nos diferentes blends. A verificação da aprendizagem e da eficiência das redes neurais em generalizar dados foi realizada solicitando-se formulações de 16 blends utilizados e 16 não utilizados no treinamento, respectivamente. Desta forma, observou-se o alto desempenho das redes neurais na predição do conteúdo de gordura sólida e ponto de fusão de blends formulados com as matérias-primas do treinamento. Para averiguar a amplitude de aplicação, formulações de gorduras para recheio de biscoito foram requisitadas à rede. Foram selecionadas três formulações para cada gordura comercial usada como padrão, sendo que todas apresentaram maior desvio do conteúdo de gordura sólida, em relação ao solicitado, nas temperaturas de 10°C e 20°C. Já o conteúdo de gordura sólida e ponto de fusão determinados experimentalmente para cada formulação foram muito semelhantes aos preditos. Os recheios produzidos com as formulações propostas pela rede e com as gorduras comerciais apresentaram excelente estabilidade térmica. As formulações propostas pela rede, apesar de se apresentarem mais macias que as gorduras comerciais, foram capazes de manter a estrutura dos recheios e os biscoitos unidos sem a expulsão do recheio. A rede neural pode ser considerada uma ferramenta de grande valor na indústria, como alternativa aos procedimentos convencionais de formulação, assim como na produção de alimentos com zero ou baixo teor de isômeros trans / Abstract: The challenge for food industries to replace trans fats in various products lies in the development of formulations that yield fats with equivalent functionality and economic feasibility. Chemical interesterification has been used as the main alternative for obtaining zero trans plastic fats. Despite the technological evolution of raw material production processes, conventional methods used by food industries to formulate specialty fats are time-consuming and laborious and, in addition to calculations, many trial and error procedures are necessary. Neural networks are a field of computer science related to artificial intelligence, which has been used successfully in the area of oils and fats. Considering the difficulties faced by industries in the formulation stage of fats, the objective of this study was to apply the technique of artificial neural networks in the formulation of blends for zero trans biscuit fillings. Multilayer perceptron neural networks were constructed and trained using three raw materials: soybean oil and two interesterified fat bases. The neural network training phase was performed using as input variables the solid fat content and melting point of 62 examples of blends prepared with the three raw materials and, as output variables, the proportion of each raw material used in the different blends. The assessment of the learning capacity and efficiency of the neural networks in generalizing data was performed by requesting formulations of 16 blends used in training and 16 not used in training, respectively. The high performance of the neural networks to predict the solid fat content and melting point of blends formulated with the raw materials used for training was observed. To determine the range of application, formulations of fats for biscuit filling were requested to the network. Three formulations for each commercial fat used as standard were selected, all of which presented deviations greater than the solid fat content requested at temperatures of 10°C and 20°C. However, the solid fat content and the melting point determined experimentally for each formulation were very similar to those predicted. The fillings made with the formulations proposed by the network and commercial fats showed excellent thermal stability. The formulations proposed by the network, even though softer than the commercial fats, were able to maintain the structure of both filling and biscuit together without the expulsion of the filling. Neural networks can be considered a very valuable resource for the industry, as an alternative to conventional formulation procedures, as well as for the design and production of foods with low or zero trans isomer contents / Doutorado / Engenharia de Alimentos / Doutor em Tecnologia de Alimentos
|
Page generated in 0.119 seconds