• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study on Interestingness Measures for Associative Classifiers

Jalali Heravi, Mojdeh 11 1900 (has links)
Associative classification is a rule-based approach to classify data relying on association rule mining by discovering associations between a set of features and a class label. Support and confidence are the de-facto interestingness measures used for discovering relevant association rules. The support-confidence framework has also been used in most, if not all, associative classifiers. Although support and confidence are appropriate measures for building a strong model in many cases, they are still not the ideal measures because in some cases a huge set of rules is generated which could hinder the effectiveness in some cases for which other measures could be better suited. There are many other rule interestingness measures already used in machine learning, data mining and statistics. This work focuses on using 53 different objective measures for associative classification rules. A wide range of UCI datasets are used to study the impact of different interestingness measures on different phases of associative classifiers based on the number of rules generated and the accuracy obtained. The results show that there are interestingness measures that can significantly reduce the number of rules for almost all datasets while the accuracy of the model is hardly jeopardized or even improved. However, no single measure can be introduced as an obvious winner.
2

A Study on Interestingness Measures for Associative Classifiers

Jalali Heravi, Mojdeh Unknown Date
No description available.

Page generated in 0.0733 seconds