• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers l’observation du bruit quantique de la pression de radiation dans un interféromètre suspendu : l’expérience QuRaG / Towards the observation of the radiation pressure noise in a suspended interferometer : the QuRaG experiment

Di Pace, Sibilla 15 December 2014 (has links)
L'existence des ondes gravitationnelles (OG) est l'une des prédictions les plus intéressantes de la théorie de la Relativité Générale d'Einstein. La découverte expérimentale des OG serait donc un test important de la théorie elle-même et permettra d'ouvrir une nouvelle fenêtre d'observation en particulier dans les régions de l'Univers inaccessible à l'observation électromagnétique. Les détecteurs interférométriques, comme Virgo, sont les dispositifs les plus prometteurs pour la détection d’OG. Actuellement, leur sensibilité n'est pas encore suffisante pour avoir un taux d'observation de quelques événements/an. Un intense programme expérimental pour l’améliorer est en cours. Particulièrement, les prochaines générations de détecteurs d'OG, aux basses fréquences, seront limitées par l'effet de la pression de radiation (PR) sur les miroirs suspendus. Ce phénomène, pas encore observé expérimentalement, est l'objet d'un champ de recherche très actif. Mon travail ici présenté vise à la construction d'un détecteur pour l'étude des effets quantiques de la PR dans les détecteurs d’OG: QuRaG. Il sera constitué d'un interféromètre de Michelson suspendu dont chaque bras sera une cavité Fabry-Pérot de très haute finesse, dans laquelle seulement le miroir de fond sera suspendu et sensible au bruit quantique de la PR. Durant ma thèse j'ai participé activement au R&D de tous les sous-systèmes de QuRaG. Par conséquent, le travail que j'ai fait porte sur divers aspects du projet dont les problématiques appartiennent à différents domaines de la physique. Mon travail présenté ici démontre que QuRaG sera réalisable et qu’il observera le bruit de la PR dans la bande de fréquences attendue. / The existence of gravitational waves (GW) is one of the most interesting predictions of the theory of general relativity of Einstein. The experimental discovery of GW would be an important test of the theory itself. In addition, the detection of GW will open a new window of observation especially in those regions of the Universe inaccessible to electromagnetic observations. Interferometers, as Virgo are the most promising devices for the detection of GW. Currently, the sensitivity of these detectors is not yet sufficient to have a detection rate of few events/year. Therefore, an intense experimental program to improve the sensitivity is underway. Specifically, the sensitivity of the next generations of GW detectors, at low frequencies, will be limited by the effect of the radiation pressure (RP) on the suspended mirrors. This phenomenon not yet observed experimentally in the ground based GW detectors band, is currently the subject of a very active research field. My work presented here aims at building a detector for studying quantum effects of RP in GW detectors: the QuRaG experiment. It will consist of a suspended Michelson interferometer where each arm will be a high finesse Fabry-Pérot cavity, in which only the end mirror will be further suspended and then sensitive to the RP noise. During my PhD I have actively participated to the R&D of all QuRaG subsystems. Therefore, the work that I have done deals with various aspects of the project whose related problems belong to different domains of physics. My work described in this manuscript demonstrates that QuRaG is realizable and that it will be able to observe the RP noise in the expected frequency range.

Page generated in 0.0933 seconds