Spelling suggestions: "subject:"centerface eliability"" "subject:"centerface deliability""
1 |
Reliability Analysis of the Cracked Ag-SU8 Interface on the Channel Wall in a Micro-PEMFCShih, Yi-san 16 August 2006 (has links)
The efficiency of the fuel cell depends on both the kinetics of the electrochemical process and performance of the components. The main aim of this research is to analysis the reliability of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. An existed surface crack on the channel wall subjected to the flow induced compressive stresses and shear stresses will propagate and lead to the spall formation. The results show that as the crack length increases, the value of KI will increase, but the value of KII decreases slightly. The reliability analysis of the interfacial crack between Ag and SU8 on the Micro-channel wall in PEMFC is discussed in this thesis.
|
2 |
Density functional simulations of defect behavior in oxides for applications in MOSFET and resistive memoryLi, Hongfei January 2018 (has links)
Defects in the functional oxides play an important role in electronic devices like metal oxide semiconductor field effect transistors (MOSFETs) and resistive random-access memories (ReRAMs). The continuous scaling of CMOS has brought the Si MOSFET to its physical technology limit and the replacement of Si channel with Ge channel is required. However, the performance of Ge MOSFETs suffers from Ge/oxide interface quality and reliability problems, which originates from the charge traps and defect states in the oxide or at the Ge/oxide interface. The sub-oxide layers composed of GeII states at the Ge/GeO2 interface seems unavoidable with normal passivation methods like hydrogen treatment, which has poor electrical properties and is related to the reliability problem. On the other hand, ReRAM works by formation and rupture of O vacancy conducting filaments, while how this process happens in atomic scale remains unclear. In this thesis, density functional theory is applied to investigate the defect behaviours in oxides to address existing issues in these electronic devices. In chapter 3, the amorphous atomic structure of doped GeO2 and Ge/GeO2 interface networks are investigated to explain the improved MOSFET reliability observed in experiments. The reliability improvement has been attributed to the passivation of valence alternation pair (VAP) type O deficiency defects by doped rare earth metals. In chapter 4, the oxidation mechanism of GeO2 is investigated by transition state simulation of the intrinsic defect diffusion in the network. It is proposed that GeO2 is oxidized from the Ge substrate through lattice O interstitial diffusion, which is different from SiO2 which is oxidized by O2 molecule diffusion. This new mechanism fully explains the strange isotope tracer experimental results in the literature. In chapter 5, the Fermi level pinning effect is explored for metal semiconductor electrical contacts in Ge MOSFETs. It is found that germanides show much weaker Fermi level pinning than normal metal on top of Ge, which is well explained by the interfacial dangling bond states. These results are important to tune Schottky barrier heights (SBHs) for n-type contacts on Ge for use on Ge high mobility substrates in future CMOS devices. In chapter 6, we investigate the surface and subsurface O vacancy defects in three kinds of stable TiO2 surfaces. The low formation energy under O poor conditions and the +2 charge state being the most stable O vacancy are beneficial to the formation and rupture of conducting filament in ReRAM, which makes TiO2 a good candidate for ReRAM materials. In chapter 7, we investigate hydrogen behaviour in amorphous ZnO. It is found that hydrogen exists as hydrogen pairs trapped at oxygen vacancies and forms Zn-H bonds. This is different from that in c-ZnO, where H acts as shallow donors. The O vacancy/2H complex defect has got defect states in the lower gap region, which is proposed to be the origin of the negative bias light induced stress instability.
|
Page generated in 0.0566 seconds