• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les inclusions magmatiques : des cinétiques de croissance cristalline à la formation des corps planétaires / Melt inclusions : from crystal growth kinetics to planetary-bodies formation

Sonzogni, Yann 14 January 2011 (has links)
Décrypter les mécanismes et cinétiques de croissance et dissolution des minéraux dans les liquides silicatés est indispensable à la compréhension des processus magmatiques fondamentaux. La migration transcristalline des inclusions magmatiques sous l'effet d'un gradient thermique permet de quantifier une loi cinétique de croissance et dissolution du minéral hôte dans des conditions proches de celles qui prévalent le plus souvent dans la nature. L'objectif principal de ce travail de thèse était : i) d'étudier l'effet de la composition du liquide piégé sur le processus de migration dans l'olivine et ii) d'exploiter systématiquement le processus de migration afin de quantifier les lois cinétiques pour d'autres couples minéral-liquide. Lorsqu'elles sont soumises à un gradient thermique, les inclusions siliceuses (SiO2 ≥ 60pds%) piégées dans les olivines mantelliques et les inclusions basaltiques piégées dans les clinopyroxènes volcaniques migrent à travers leur hôte en direction du point chaud de la zone de travail. La migration s'effectue à une vitesse constante et, dans les olivines, sans modification de la composition du liquide piégé ; les inclusions des clinopyroxènes subissent en revanche une rééquilibration chimique transitoire en début de migration. Les cavités, subsphériques avant la migration, évoluent vers la forme en cristal-négatif du minéral hôte en cours d'expérience. L'achèvement de l'évolution morphologique nécessite un temps caractéristique gouverné par la diffusion chimique dans le liquide. La bulle de gaz exsolvé dans les inclusions n'est pas entraînée dans la migration. Elle se sépare du liquide magmatique et donne naissance à une inclusion fluide isolée au sein du cristal hôte. Les résultats expérimentaux indiquent que la migration procède par dissolution du minéral hôte à l'avant et recristallisation à l'arrière de l'inclusion. La vitesse de migration est limitée par les mécanismes à l'interface cristal-liquide, non par la diffusion chimique. Les taux de croissance et dissolution de l'olivine et du clinopyroxène que nous obtenons sont respectivement trente et quinze fois inférieurs à ceux déterminés dans une étude antérieure à partir d'expériences de migration d'inclusions basaltiques dans des olivines volcaniques. Ils obéissent cependant à la même forme de loi cinétique, qui peut être aisément transposée à des environnements de cristallisation ou de fusion naturels, similaires ou de plus faible déséquilibre. Le taux de croissance et dissolution de l'olivine lors des migrations n'a pas de lien simple avec la composition du liquide piégé ; il est peut-être aussi en grande partie contrôlé par la densité de dislocations du cristal hôte. Le phénomène de migration n'a pas été observé dans le quartz et le plagioclase pour les durées d'expériences réalisées. Il est néanmoins probable que l'absence de migration lors des expériences ne soit qu'apparente. Notamment, la prédominance de liaisons de forte énergie dans la structure du quartz et du plagioclase est susceptible de rendre les processus interfaciaux, et donc aussi la dissolution, particulièrement lente. Au cours de ce travail de thèse, l'opportunité s'est présentée d'étudier les inclusions magmatiques piégées dans les cristaux d'olivine de la pallasite Brahin. En particulier, deux familles d'inclusions ont été identifiées. La première consiste en des plans d'inclusions secondaires contenant de nombreuses chromites et des assemblages à métal-sulfure et olivine phosphorée ; la seconde correspond à des inclusions isolées renfermant pour la plupart de la stanfieldite, une bulle de gaz et de l'olivine phosphorée. Les inclusions secondaires se seraient formées suite à un choc ayant eu lieu alors que l'assemblage minéralogique actuel de Brahin était déjà formé, ou en cours de formation. En revanche, les inclusions de stanfieldite témoigneraient d'un choc prépallasitique. / Deciphering the mechanisms and kinetics of crystal growth and dissolution in silicate melts is essential for understanding the fundamental magmatic processes. When remelted and subjected to an imposed thermal gradient, melt inclusions migrate through their host, which provides a direct access to the host crystal growth / dissolution kinetics and allows to quantify the kinetic laws at very low undercoolings or overheatings, i.e. in conditions appropriate to many natural systems. The main goal of the present study was: i) to study the effect of the trapped melt composition on the migration process in olivine and ii) to extend the transcrystalline melt migration approach to quantify the kinetic law for other mineral-melt pairs. When subjected to a thermal gradient, Si-rich melt inclusions (SiO2 ≥ 60 wt%) in mantle olivines and basaltic melt inclusions in volcanic clinopyroxenes migrate through their host toward the host spot of the working zone. Migration proceeds at a constant rate and in olivine, without modification of the trapped melt composition ; melt inclusions in clinopyroxene, however, undergo a transient chemical reequilibration while they begin to migrate. While moving, the melt inclusions gradually change from subspherical to a faceted, negative-crystal shape. Completion ofthe morphological evolution requires a characteristic time that is governed by chemical diffusion. When a gas bubble is initially present, it responds to elastic forces by quickly shifting toward the cold end of the inclusion, where it soon becomes engulfed as an isolated fluid inclusion in the reprecipitated crystal. The experimental results indicate that the migration operates by progressive dissolution and recrystallistion of the host, governed by interface kinetics with no interference of chemical diffusion.The growth / dissolution rates we obtained for olivine and clinopyroxene are respectively thirty and fifteen times lower than those determined in a previous study from melt migration experiments on basaltic inclusions in volcanic olivines. Nevertheless, they obey the same form of kinetic law, which can be transposed to equally or more sluggish melting or crystallisation events in nature. Dependence of the growth / dissolution rate of olivine on trapped melt composition is not straightforward ; rates may be largely controlled by the density of dislocations in the host crystal. The melt migration phenomenon was not observed in quartz and plagioclase for the investigated experiment durations. Nonetheless, the lack of migration during experiments may only be apparent. Notably, the dominance of high-strength bonds in the quartz and plagioclase structure may render interfacial reactions, and so dissolution, particularly slow. During this research work, we had the opportunity to study the melt inclusions trapped in olivine crystals from the Brahin pallasite. In particular, two contrasted sets of melt inclusions were evidenced. The first set consists of plans of secondary inclusions containing abundant chromite and assemblies of metal, sulfide, and phosphoran olivine ; the second set corresponds to isolated inclusions consisting for the most part of stanfieldite, a gas bubble, and phosphoran olivine. Secondary inclusions may have formed during a shock event that took place while the current stony-iron assembly of the Brahin pallasite was already formed, or was created by this shock. However, stanfieldite inclusions may originate from a pre-pallasitic shock event.
2

Quantifying Isothermal Solidification Kinetics during Transient Liquid Phase Bonding using Differential Scanning Calorimetry

Kuntz, Michael January 2006 (has links)
The problem of inaccurate measurement techniques for quantifying isothermal solidification kinetics during transient liquid phase (TLP) bonding in binary and ternary systems; and resulting uncertainty in the accuracy of analytical and numerical models has been addressed by the development of a new technique using differential scanning calorimetry (DSC). This has enabled characterization of the process kinetics in binary and ternary solid/liquid diffusion couples resulting in advancement of the fundamental theoretical understanding of the mechanics of isothermal solidification. The progress of isothermal solidification was determined by measuring the fraction of liquid remaining after an isothermal hold period of varying length. A 'TLP half sample', or a solid/liquid diffusion couple was setup in the sample crucible of a DSC enabling measurement of the heat flow relative to a reference crucible containing a mass of base metal. A comparison of the endotherm from melting of an interlayer with the exotherm from solidification of the residual liquid gives the fraction of liquid remaining. The Ag-Cu and Ag-Au-Cu systems were employed in this study. Metallurgical techniques were used to compliment the DSC results. The effects of sample geometry on the DSC trace have been characterized. The initial interlayer composition, the heating rate, the reference crucible contents, and the base metal coating must be considered in development of the experimental parameters. Furthermore, the effects of heat conduction into the base metal, baseline shift across the initial melting endotherm, and the exclusion of primary solidification upon cooling combine to systematically reduce the measured fraction of liquid remaining. These effects have been quantified using a modified temperature program, and corrected using a universal factor. A comparison of the experimental results with the predictions of various analytical solutions for isothermal solidification reveals that the moving interface solution can accurately predict the interface kinetics given accurate diffusion data. The DSC method has been used to quantify the process kinetics of isothermal solidification in a ternary alloy system, with results compared to a finite difference model for interface motion. The DSC results show a linear relationship between the interface position and the square root of the isothermal hold time. While the numerical simulations do not agree well with the experimental interface kinetics due to a lack of accurate thermodynamic data, the model does help develop an understanding of the isothermal solidification mechanics. Compositional shift at the solid/liquid interface has been measured experimentally and compared with predictions. The results show that the direction of tie-line shift can be predicted using numerical techniques. Furthermore, tie-line shift has been observed in the DSC results. This study has shown that DSC is an accurate and valuable tool in the development of parameters for processes employing isothermal solidification, such as TLP bonding.
3

Quantifying Isothermal Solidification Kinetics during Transient Liquid Phase Bonding using Differential Scanning Calorimetry

Kuntz, Michael January 2006 (has links)
The problem of inaccurate measurement techniques for quantifying isothermal solidification kinetics during transient liquid phase (TLP) bonding in binary and ternary systems; and resulting uncertainty in the accuracy of analytical and numerical models has been addressed by the development of a new technique using differential scanning calorimetry (DSC). This has enabled characterization of the process kinetics in binary and ternary solid/liquid diffusion couples resulting in advancement of the fundamental theoretical understanding of the mechanics of isothermal solidification. The progress of isothermal solidification was determined by measuring the fraction of liquid remaining after an isothermal hold period of varying length. A 'TLP half sample', or a solid/liquid diffusion couple was setup in the sample crucible of a DSC enabling measurement of the heat flow relative to a reference crucible containing a mass of base metal. A comparison of the endotherm from melting of an interlayer with the exotherm from solidification of the residual liquid gives the fraction of liquid remaining. The Ag-Cu and Ag-Au-Cu systems were employed in this study. Metallurgical techniques were used to compliment the DSC results. The effects of sample geometry on the DSC trace have been characterized. The initial interlayer composition, the heating rate, the reference crucible contents, and the base metal coating must be considered in development of the experimental parameters. Furthermore, the effects of heat conduction into the base metal, baseline shift across the initial melting endotherm, and the exclusion of primary solidification upon cooling combine to systematically reduce the measured fraction of liquid remaining. These effects have been quantified using a modified temperature program, and corrected using a universal factor. A comparison of the experimental results with the predictions of various analytical solutions for isothermal solidification reveals that the moving interface solution can accurately predict the interface kinetics given accurate diffusion data. The DSC method has been used to quantify the process kinetics of isothermal solidification in a ternary alloy system, with results compared to a finite difference model for interface motion. The DSC results show a linear relationship between the interface position and the square root of the isothermal hold time. While the numerical simulations do not agree well with the experimental interface kinetics due to a lack of accurate thermodynamic data, the model does help develop an understanding of the isothermal solidification mechanics. Compositional shift at the solid/liquid interface has been measured experimentally and compared with predictions. The results show that the direction of tie-line shift can be predicted using numerical techniques. Furthermore, tie-line shift has been observed in the DSC results. This study has shown that DSC is an accurate and valuable tool in the development of parameters for processes employing isothermal solidification, such as TLP bonding.

Page generated in 0.0693 seconds