• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Introduction et analyse des schémas de cotation en avance de phase

Socoliuc, Michel 09 July 2010 (has links) (PDF)
Il y a peu, j'ai pu lire « qu'on pouvait considérer que les ponts romains de l'Antiquité, pouvaient être considérés comme inefficaces, au regard des standards actuels : ils utilisaient trop de pierre et énormément de travail était nécessaire à leur construction. Au fil des années, pour répondre à une problématique équivalente, nous avons appris à utiliser moins de matériaux et à réduire la charge de travail ». Ces problématiques nous les retrouvons aussi en conception mécanique où l'on essaye en continu de proposer des systèmes de plus en plus performants mais devant être conçus en moins de temps, étant moins cher à produire et fournissant des prestations au moins équivalentes à ce qui a déjà été conçu.Au cours d'un processus de conception classique, les concepteurs définissent une géométrie ne présentant aucun défaut puis, étant donné que les moyens de production ne permettent pas d'obtenir de telles pièces finales, ils spécifient les schémas de cotation définissant les écarts acceptables garantissant le bon fonctionnement du système. Seulement, cela est fait après avoir produit les dessins détaillés, c'est à dire trop tard. Pour répondre à cette problématique, je présenterai l'intégration, très tôt dans le cycle de vie de conception, d'un processus de validation optimisé, basé sur une maquette numérique directement en lien avec sa représentation fonctionnelle (maquette fonctionnelle), et permettant de valider des schémas de cotation 3D standardisés.Je décrirai d'abord ce que l'on entend par « maquette fonctionnelle » et surtout ce que cette nouvelle définition apporte en plus de la définition numérique. Une fois ce point abordé, je détaillerai les liens qui permettent d'avoir une unicité de l'information au sein de l'environnement de travail, tout comme les processus qui permettent de lier les représentations fonctionnelles et numériques.Ensuite, je détaillerai les processus basés sur ces concepts, et qui ont pour but de valider les choix qui sont effectués en avance de phase au niveau des schémas de cotation. Pour ce faire, je commencerai par présenter l'analyse au pire des cas (utilisant les modèles de domaines écarts notamment), permettant de garantir le bon fonctionnement de l'ensemble mécanique, dans le cas ou touts les écarts se retrouvent à l'intérieur des zones respectives (définies par les tolérances).Enfin, je finirai par introduire ce qu'une couche statistique, couplée à l'analyse au pire des cas utilisant les enveloppes convexes, peut amener dans le contexte industriel et notamment sous la contrainte temporelle.
2

Introduction et analyse des schémas de cotation en avance de phase / Introduction and analysis of the tolerancing schemes, during the first design stages.

Socoliuc, Michel 09 July 2010 (has links)
Il y a peu, j’ai pu lire « qu’on pouvait considérer que les ponts romains de l’Antiquité, pouvaient être considérés comme inefficaces, au regard des standards actuels : ils utilisaient trop de pierre et énormément de travail était nécessaire à leur construction. Au fil des années, pour répondre à une problématique équivalente, nous avons appris à utiliser moins de matériaux et à réduire la charge de travail ». Ces problématiques nous les retrouvons aussi en conception mécanique où l’on essaye en continu de proposer des systèmes de plus en plus performants mais devant être conçus en moins de temps, étant moins cher à produire et fournissant des prestations au moins équivalentes à ce qui a déjà été conçu.Au cours d'un processus de conception classique, les concepteurs définissent une géométrie ne présentant aucun défaut puis, étant donné que les moyens de production ne permettent pas d’obtenir de telles pièces finales, ils spécifient les schémas de cotation définissant les écarts acceptables garantissant le bon fonctionnement du système. Seulement, cela est fait après avoir produit les dessins détaillés, c'est à dire trop tard. Pour répondre à cette problématique, je présenterai l’intégration, très tôt dans le cycle de vie de conception, d’un processus de validation optimisé, basé sur une maquette numérique directement en lien avec sa représentation fonctionnelle (maquette fonctionnelle), et permettant de valider des schémas de cotation 3D standardisés.Je décrirai d'abord ce que l’on entend par « maquette fonctionnelle » et surtout ce que cette nouvelle définition apporte en plus de la définition numérique. Une fois ce point abordé, je détaillerai les liens qui permettent d’avoir une unicité de l’information au sein de l’environnement de travail, tout comme les processus qui permettent de lier les représentations fonctionnelles et numériques.Ensuite, je détaillerai les processus basés sur ces concepts, et qui ont pour but de valider les choix qui sont effectués en avance de phase au niveau des schémas de cotation. Pour ce faire, je commencerai par présenter l’analyse au pire des cas (utilisant les modèles de domaines écarts notamment), permettant de garantir le bon fonctionnement de l’ensemble mécanique, dans le cas ou touts les écarts se retrouvent à l’intérieur des zones respectives (définies par les tolérances).Enfin, je finirai par introduire ce qu’une couche statistique, couplée à l’analyse au pire des cas utilisant les enveloppes convexes, peut amener dans le contexte industriel et notamment sous la contrainte temporelle. / Some time ago, I read "According to our current standards, we could consider Roman bridges of ancient times as ineffective: they used too much stone and hard work during construction. Over the years, in order to respond to similar problems, we learned how to use fewer materials and reduce the workload. These issues can also be found in the mechanical design field, where we continuously try to offer more efficient systems, but which have to be designed in less time, be cheaper to produce and provide benefits at least equivalent to what has already been designed.During a conventional design process, designers define the ideal geometries and - given that the machining tools cannot produce mechanical parts without any geometrical defects - specify the associated tolerancing schemes. These tolerancing schemes define acceptable geometrical deviations, thus providing a well-functioning system. Unfortunately this is done after having designed detailed parts and thus, too late.In order to address this problem, I will begin by introducing the integration, in the first design stages, of a new optimized validation process based on a Digital Mock-Up, directly linked to its functional representation (Functional Mock-Up), in order to validate 3D standardized tolerancing schemes. I'll first describe what is meant by "Functional Mock-Up" (FMU) and specify which information is added to the Digital Mock-Up (DMU). Once that is done, I will detail the relationship that leads to the uniqueness of the information and the processes linking the Functional and Digital representations.Then, I'll detail the processes based on these concepts, which aim to validate the tolerancing schemes, during the early design stages. To do this, I'll begin by introducing the worst case analysis (using the deviation domain model), which ensures the proper functioning of the mechanical system. Finally, I will end this by introducing the benefits that can be brought, by coupling a statistical layer to the worst case analysis (using the convex hull).
3

Étalonnage au sol de l’instrument SIMBIO-SYS à bord de la mission ESA/BEPICOLOMBO / Ground calibration of the SIMBIO-SYS instrument for the ESA/BEPICOLOMBO mission

Rodriguez-Ferreira, Julian 26 January 2015 (has links)
La mission BepiColombo est une des pierres angulaires du programme scientifique de l'ESA. Elle permettra l'étude de la planète Mercure grâce à deux sondes mises en orbite autour de la planète. Une des deux sondes, Mercury Planetary Orbiter (MPO) développée par l'ESA, sera dédiée à l'étude de la surface et de l'intérieur de la planète. La mission est prévue pour un lancement en 2016 et une arrivée sur Mercure en janvier 2024. L’IAS est responsable de l’étalonnage de l'ensemble d'imageurs SIMBIO-SYS (Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem) composé d’une caméra haute résolution (HRIC), d’une caméra stéréoscopique (STC) et d’un imageur hyperspectral visible et proche-infrarouge (VIHI). Ces instruments devraient profondément modifier nos connaissances de la composition et de la géomorphologie de la surface de Mercure. Ma thèse a consisté à participer à la définition et à la mise en place des caractéristiques et des fonctionnalités du dispositif expérimental d'étalonnage qui se compose principalement d’une cuve à vide contenant les instruments, d’un banc optique rassemblant les sources d'étalonnage et les éléments optiques qui reconstituent les conditions d'observation de Mercure, des interfaces mécaniques permettant le positionnement de l'expérience à l'intérieur de la cuve, des interfaces thermiques visant à explorer les températures de fonctionnement des différentes parties des expériences, des interfaces informatiques assurant la communication avec l'expérience et le pilotage du dispositif d'étalonnage en fonction des tests à réaliser. J’ai modélisés et validé expérimentalement certaines performances du dispositif. Enfin, j’ai défini en étroite collaboration avec les équipes italiennes co-responsables des trois instruments les différentes séquences d’étalonnage qui seront utilisées lors de l’étalonnage. / BepiColombo is one of the cornerstones of the scientific program of ESA. It will study the planet Mercury with two spacecrafts in orbit around the planet. One of the two spacecrafts, the Mercury Planetary Orbiter (MPO), will be dedicated to the study of the surface and interior of the planet. The mission is scheduled for launch in 2016 and arrival at Mercury in January 2024. IAS is responsible for the calibration of the imaging system SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory-SYStem) which consists of a high-resolution camera (HRIC), a stereoscopic camera (STC) and a visible and near-infrared hyperspectral imager (VIHI). These instruments should deeply change our understanding of the composition and geomorphology of Mercury surface. My research subject allowed me to participate in all the activities concerning the definition, implementation and validation of the calibration facilities at the IAS. These facilities are divided into different sub-systems: a thermal vacuum chamber containing the instrument during all the calibration campaign that shall simulate the environmental conditions (temperature and pressure), an optical bench with optical components and radiometrically calibrated sources reproducing the observational conditions as it will be seen by the instrument once placed in Mercury’s orbit, mechanical interfaces allowing the positioning and guidance of the instrument when placed inside the vacuum chamber with the required precision and accuracy, thermal interfaces facilitating the thermal excursion of the detectors, software interfaces so as to automatize and control the entire system. I developed a radiometric model of the calibration system and instrument to refine the calibration sources. In parallel, I performed several measurements of some subsystems so as to validate the optical assembly and to improve its control. Finally as a result of a close collaboration with the three Italian scientific teams of the instrument, I elaborate the fully package of the calibration sequences and the detailed instrument configuration that will be used during the calibration campaign.

Page generated in 0.0955 seconds