• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Application of Microencapsulated Biobased Phase Change Material on Textile

Hagman, Susanna January 2016 (has links)
The increasing demand for energy in combination with a greater awareness for our environmental impact have encouraged the development of sustainable energy sources, including materials for energy storage. Latent heat thermal energy storage by the use of phase change material (PCM) have become an area of great interest. It is a reliable and efficient way to reduce energy consumption. PCMs store and release latent heat, which means that the material can absorb the excess of heat energy, save it and release it when needed. By introducing soy wax as a biobased PCM and apply it on textile, one can achieve a thermoregulation material to be used in buildings and smart textiles. By replacing the present most used PCM, paraffin, with soy wax one cannot only decrease the use of fossil fuel, but also achieve a less flammable material. The performance of soy wax PCM applied on a textile fabric have not yet been investigated but can be a step towards a more sustainable energy consumption. The soy wax may also broaden the application for PCM due to its low flammability. The aim is to develop an environmental friendly latent heat thermal energy storage material to be used within numerous application fields.
2

Interfacially Polymerized Thin-Film Composite Membranes for Gas Separation Using Aliphatic Alcohols as Polar Phase

Eromosele, Praise 06 1900 (has links)
Membrane processes have received growing attention due to their low energy consumption and ease of operation. Thin-film composite reverse osmosis membranes based on polyamides are the most widely applied commercial membranes, because of their high flux and selectivity. However, their application for gas separation processes is still limited. This is the due to the presence of defects in the membrane when in the dry state. Traditionally, thin-film composite membranes are made by interfacial polymerization between a polar (aqueous) phase and a non-polar (organic) phase. The most commonly applied thin-film composite membranes are made by dissolving m-phenylene diamine in the aqueous phase and trimesoyl chloride in the organic phase. This work investigated the possibility of fabricating thin-film composite membranes when an aliphatic alcohol (methanol, ethanol or isopropanol) is used as the polar phase. This is further extended to examining the ability of a PDMS coating to plug the defects in such layers. The effects of temperature and support type on the membrane performance were also studied. Solubility tests were conducted to determine the solubility limit of commercial and in-house fabricated amine monomers in water, methanol, ethanol and isopropanol. Water-insoluble monomers were found to be soluble in ethanol and methanol. Gas permeation tests were conducted on membranes made using water, methanol, ethanol and isopropanol as the polar phase. The results showed that the membranes produced by aliphatic alcohols had higher selectivities. The highest H2/CO2 selectivity of ~ 26 was observed in the ethanol-based membranes when they were coated with PDMS and tested at 80 C. It was confirmed that PDMS is able to plug the defects in the membrane. Membranes made on the polysulfone support were found to have higher permeance and comparable selectivity relative to the membranes made on the polyacrylonitrile supports. It was also found that a change in the polar phase solvent is able to alter the morphology of the membranes. SEM micrographs showed clear differences in the surface structure of each membrane. The average thickness values obtained from ellipsometry measurements showed a correlation with the interface miscibility. The thickest membrane corresponded to the most miscible interface (IPA/Isopar).

Page generated in 0.1149 seconds