• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PRECISE MEASUREMENTS OF TRANSVERSE SPIN-DEPENDENT AZIMUTHAL CORRELATIONS OF CHARGED PION PAIRS IN TRANSVERSELY POLARISED PROTON-PROTON COLLISIONS AT CENTER-OF-MASS ENERGY = 510 GIGA ELECTRON VOLT AT STAR

Ghimire, Navagyan, 0000-0001-9694-1654 05 1900 (has links)
At leading twist, the spin structure of the nucleon is described by three fundamental parton distribution functions (PDFs): unpolarized PDFs (f_1 (x)), helicity PDFs (g_1 (x)), and transversity PDFs (h_1^q (x)). Unlike f_1 (x) and g_1 (x), h_1^q (x) is a chiral-odd function that must couple with another chiral-odd function to manifest in experimentally observable chiral-even physical quantities such as cross-sections or asymmetries. Due to its chiral-odd nature, h_1^q (x) remains inaccessible in inclusive deep inelastic scattering (DIS) experiments, where f_1 (x) and g_1 (x) garner a larger amount of experimental data to constrain them, hence making h_1^q (x) one of the least constrained fundamental PDFs. In the Standard Model, only a few channels exist where h_1^q (x) couples with another chiral-odd function. The production of di-hadron in the final state from transversely polarized pp collisions represents one of the theoretically cleanest channels, where h_1^q (x) couples with another chiral-odd distribution function known as the interference fragmentation function (IFF, H_1^∢ (z,M_h^2)) and gives experimentally observable di-hadron azimuthal correlation asymmetry (A_UT^sin⁡(φ_RS ) ). This thesis work presents the most precise measurement, to date, of the di-pion A_UT^sin⁡(φ_RS ) in the mid-pseudorapidity region (-1 <η<1) using STAR 2017 transversely polarized pp data at a center-of-mass energy (√s) of 500 GeV. In 2017, STAR collected a dataset of 350 pb^(-1), approximately 15 times larger than the previous STAR 2011 dataset. Consequently, this new dataset improves the statistical precision of A_UT^sin⁡(φ_RS ) by a factor of 4, which will contribute significantly to constraining the h_1^q (x) in the global analyses.¬ / Physics

Page generated in 0.1905 seconds