• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 388
  • 102
  • 79
  • 54
  • 32
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 884
  • 160
  • 130
  • 97
  • 85
  • 80
  • 75
  • 74
  • 72
  • 67
  • 59
  • 57
  • 53
  • 51
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

INFRARED PHASE-SHIFTING INTERFEROMETRY USING A PYROELECTRIC VIDICON (TESTING, FABRICATION).

STAHL, HARLOW PHILIP. January 1985 (has links)
The increased demand for modern optical components necessitates an interferometric system that can rapidly and accurately measure wavefront phase errors during the complete fabrication process, from generation to polishing. The suitability of infrared wavelengths for several optical testing applications is well known, as are the greatly increased speed and accuracy of phase-shifting interferometric techniques. Therefore, this dissertation discusses extensively three topics: (1) the demonstration theoretically and experimentally of the feasibility of using a pyroelectric vidicon for infrared phase-shifting interferometry, (2) the design and fabrication of a prototype next-generation optical shop infrared phase-shifting interferometric system, and (3) the definition and quantification of the fundamental system performance parameters and limitations. Additionally, some application examples of infrared phase-shifting interferometry are presented, and specific recommendations for future work are included with the conclusions.
22

Optical interferometric measurement of in-plane residual stresses in SiO₂ films on silicon substrates

Ghaffari, Kasra 08 1900 (has links)
No description available.
23

Estimation of astronomical images from the bispectrum of atmospherically distorted infrared data.

Freeman, Jonathan Dennis. January 1989 (has links)
The uses of the bispectrum for recovering the images of one-dimensional infrared astronomical speckle data are examined in detail. An analytic model for the bispectral transfer function, the variance, and the covariance of the bispectrum are developed. The models are evaluated by Monte Carlo integration and the results are compared to sample estimates of the same quantities obtained from simulated data. For comparison, the same sample quantities are computed from observed data. The bispectrum is shown to be useful for determining estimates of the object phase. A recursive method which is used to obtain the object phase estimates is introduced. Since the bispectrum provides multiple estimates of each object phase, a number of methods for combining the multiple estimates are developed and compared. Many techniques have been proposed to determine the phase of images which have been atmospherically distorted. Among these techniques are the Knox-Thompson, and the Simple Shift-and-Add algorithms. These methods are compared to the bispectrum via an objective measure which is developed. Optimization techniques are used to great success. A model for the bispectrum of a binary star is developed and fit to the image bispectrum by the Levenberg-Marquardt algorithm for non-linear least squares. The ability of the algorithm to determine binary star parameters from the bispectrum is tested with both simulated and observed data. Since the bispectrum may not always be available, a method is developed which determines binary star parameters from the image Fourier transform. The full set of object phases and moduli are determined by use of the conjugate gradient and conjugate direction algorithms in the last section. Two starting points for each algorithm are employed. The first starting point uses the estimates of the object phases obtained from the recursive bispectrum technique. The second assumes no information is known about the object. The speed of convergence of each algorithm is analyzed and recommendations are made for future use.
24

Dual Interferometer System for Measuring Index of Refraction

Goodwin, Eric Peter January 2007 (has links)
The optical power of a lens is determined by the surface curvature and the refractive index, n. Knowledge of the index is required for accurate lens design models and for examining material variations from sample to sample. The refractive index of glass can be accurately measured using a prism spectrometer, but measuring the index of soft contact lens materials presents many challenges. These materials are non-rigid, thin, and must remain hydrated in a saline solution during testing. Clearly an alternative to a prism spectrometer must be used to accurately measure index.A Dual Interferometer System has been designed, built and characterized as a novel method for measuring the refractive index of transparent optical materials, including soft contact lens materials. The first interferometer is a Low Coherence Interferometer in a Twyman-Green configuration with a scanning reference mirror. The contact lens material sample is placed in a measurement cuvette, where it remains hydrated. By measuring the locations of the multiple optical interfaces, the physical thickness t of the material is measured. A new algorithm has been developed for processing the low coherence signals obtained from the reflection at each optical interface.The second interferometer is a Mach-Zehnder interferometer with a tunable HeNe laser light source. This interferometer measures the optical path length (OPL) of the test sample in the cuvette in transmission as a function of five wavelengths in the visible spectrum. This is done using phase-shifting interferometry. Multiple thickness regions are used to solve 2π phase ambiguities in the OPL.The outputs of the two interferometers are combined to determine the refractive index as a function of wavelength: n(λ) = OPL(λ)/t. Since both t and OPL are measured using a detector array, n is measured at hundreds of thousands of data points. A measurement accuracy of 0.0001 in refractive index is achieved with this new instrument, which is verified using custom glass calibration samples.
25

Development of an optical fibre multiplexed Bragg grating strain measurement system

Kemp, James Edward Andrew January 1998 (has links)
No description available.
26

On the development of an optical force-feedback microphone

Karatzas, L. S. January 1994 (has links)
No description available.
27

A spatially modulated interferometer for mapping Martian water vapour sources

Reininger, Francis M. January 2001 (has links)
No description available.
28

Development and implementation of automated interferometric microscope for study of MEMS inertial sensors

Marinis, Ryan Thomas 07 May 2009 (has links)
Microelectromechanical systems (MEMS) are quickly becoming ubiquitous in commercial and military applications. As the use of such devices increases their reliability becomes of great importance. Although there has been significant research in the areas of MEMS errors, there is a lack of work regarding long term reliability of packaged systems. Residual thermomechanical stresses might relax over time which affects physical distances within a package, ultimately influencing the performance of a device. One reason that there has not been sufficient work performed on the long-term effects on structures might be the lack of a tool capable of characterizing the effects. MEMS devices have been measured for shape and its changes using interferometric techniques for some time now. Commercially available systems are able to make high resolution measurements, however they might lack loading options. To study aging effects on components a test might need to run continuously for days or weeks, with systematic operations performed throughout the process. Such a procedure is conducive to an automated data acquisition system. A system has been developed at WPI using a Twyman-Green interferometer and a custom software suite. The abilities of this system are demonstrated through analysis performed on MEMS tuning fork gyroscope (TFG) sensors. Specifically, shape is recorded to investigate die bond relaxation as a function of time and thermal cycle. Also presented are measurements made using stroboscopic illumination on operating gyroscopes, in situ. The effect of temperature on the performance of the sensors is investigated using a customized precision rate table.
29

Interferometric Optical Readout System for a MEMS Infrared Imaging Detector

Tripp, Everett 19 April 2012 (has links)
MEMS technology has led to the development of new uncooled infrared imaging detectors. One type of these MEMS detectors consist of arrays of bi-metallic photomechanical pixels that tilt as a function of temperature associated with infrared radiation from the scene. The main advantage of these detectors is the optical readout system that measures the tilt of the beams based on the intensity of the reflected light. This removes the need for electronic readout at each of the sensing elements and reduces the fabrication cost and complexity of sensor design, as well as eliminates the electronic noise at the detector. The optical readout accuracy is sensitive to the uniformity of individual pixels on the array. The hypothesis of the present research is that direct measurements of the height change corresponding to tilt through holographic interferometry will reduce the need for high pixel uniformity. Measurements of displacements for a vacuum packaged detector with nominal responsivity of 2.4nm/K are made with a Linnik interferometer employing the four phase step technique. The interferometer can measure real-time, full-field height variations across the array. In double-exposure mode, the current height map is subtracted from a reference image so that the change in deflection is measured. A software algorithm locates each mirror on the array, extracts the measured deflection at the tip of a mirror, and uses that measurement to form a pixel of a thermogram in real-time. A blackbody target projector with temperature controllable to 0.001K is used to test the thermal resolution of the imaging system. The achieved minimum temperature resolution is better than 0.25K. The double exposure technique removes mirror non-uniformity as a source of noise. A lower than nominal measured responsivity of around 1.5nm/K combined with noise from the measurements made with the interferometric optical readout system limit the potential minimum temperature resolution. Improvements need to be made both in the holographic setup and in the MEMS detector to achieve the target temperature resolution of 0.10K.
30

High power scalable diode-laser-pumped CW Nd:YAG laser using a stable-unstable resonator

Mudge, Damien. January 2000 (has links) (PDF)
Copies of author's previously published articles, inserted. Bibliography: p. 165-179. Reports on the development of a scalable high power laser for gravitational wave interferometry.

Page generated in 0.0736 seconds