• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Internal State Variable Plasticity-Damage Modeling of AISI 4140 Steel Including Microstructure-Property Relations: Temperature and Strain Rate Effects

Nacif el Alaoui, Reda 09 December 2016 (has links)
Mechanical structure-property relations have been quantified for AISI 4140 steel under different strain rates and temperatures. The structure-property relations were used to calibrate a microstructure-based internal state variable plasticity-damage model for monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study the damage-triaxiality dependence for model validation purposes. Fracture surface analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void nucleation and void sizes in the different specimens. The stress-strain behavior exhibited a fairly large applied stress state (tension, compression dependence, and torsion), a moderate temperature dependence, and a relatively small strain rate dependence.
2

Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

Yadollahi, Aref 11 August 2017 (has links)
This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval – i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel) – on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation – i.e. the orientation in which AM parts are built – on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing – here, as-built versus machined – on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defectree AM product – immediately after fabrication – has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.

Page generated in 0.0685 seconds