• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EFFECT OF UPSTREAM EDGE GEOMETRY ON THE TRAPPED MODE RESONANCE OF DUCTED CAVITIES

Elsayed, Moh Manar F. January 2013 (has links)
<p>This thesis investigates the effect of different passive suppression techniques of different configurations on the flow-excited acoustic resonance of an internal axisymmetric cavity. This type of acoustic resonance is observed in many practical applications such as valves installed in steam pipe lines, and gas transport system. An experimental setup of a cavity-duct system has been altered to facilitate the study of the suppression and/or delay of resonance over the range of Mach number of 0.07-0.4. Three different cavity depths have been studied d=12.5 mm, 25 mm, and 50 mm deep. For each depth, the cavity length is changed from L=25 mm to 50 mm. The investigation matrix includes the study of two rounding radii, two chamfer geometries and three different types of spoilers, all located at the leading edge of the cavity. A reference case of no suppression seat installed for each of the examined cavity geometries is tested. Rounding off cavity edges for both radii has increased the acoustic pressure level, yet delayed the onset of resonance. Chamfering the upstream edge of the cavity delayed the onset of resonance as a result of increasing the cavity characteristic length which delays the coupling of the shear layer perturbations and the acoustic field. The delay and the suppression of resonance achieved by the chamfer depend on the size of the cavity. All spoiler configurations have proven effectiveness in delaying and suppressing resonance for all cavities. The choice of spoiler configuration would depend on cavity size and robustness/strength of acoustic resonance.</p> / Master of Science (MSc)

Page generated in 0.085 seconds