• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Transition-State Optimization Methods By Carefully Selecting Appropriate Internal Coordinates

Rabi, Sandra January 2014 (has links)
Geometry optimization is a key step in the computational modeling of chemical reactions because one cannot model a chemical reaction without first accurately determining the molecular structure, and electronic energy, of the reactants and products, along with the transition state that connects them. These structures are stationary points— the reactant and product structures are local minima, and the transition state is a saddle point with one negative-curvature direction—on the molecular potential energy surface. Over the years, many methods for locating these stationary points have been developed. In general, the problem of finding reactant and product structures is relatively straightforward, and reliable methods exist. Converging to transition states is much more challenging. Because of the difficulty of transition-state optimization, researchers have designed optimization methods specifically for this problem. These methods try to make good choices for the initial geometry, the system of coordinates used to represent the molecule, the initial Hessian, the Hessian updating method, and the step-size. The transition-state optimization method developed in this thesis required considering all of these methods. Specifically, a new method for finding an initial guess geometry was developed in chapter 2; good choices for a coordinate system for representing the molecule were explored in chapters 2 and 6; different choices for the initial Hessian are considered in chapter 5; chapters 3 and 4 present, and test, a sophisticated new method for updating the Hessian and controlling the step-size during the optimization. iv The methods created in the process of this research led to the development of Saddle, a general-purpose geometry optimizer for transition states and stable structures, with and without constraints on the molecular coordinates. Saddle can be run in conjunction with the Gaussian program or almost any other quantum chemistry program, and it converges significantly more often than the other traditional methods we tested. / Thesis / Doctor of Science (PhD)
2

Interactions et résonances dans les systèmes quantiques / Interactions and resonances in quantum systems

Saget, Guillaume 15 December 2017 (has links)
Cette thèse traite des interactions et résonances dans les systèmes quantiques et se subdivise en trois sous-thématiques. Dans les premiers chapitres, nous proposons, dans le cadre de la limite locale, une méthode systématique de construction d'un hamiltonien vibrationnel mis sous forme normale pour des systèmes moléculaires à n degrés de liberté fortement excités, à partir des générateurs d'une algèbre de Lie, l'algèbre des polynômes invariants construite en mécanique classique à partir du noyau de l'opérateur adjoint adH0 . Puis, nous exposons les méthodes de construction en l'absence et en présence d'une résonance p : q. Une application à la molécule triatomique non linéaire ClOH est ensuite envisagée.D'autre part, nous réalisons, à l'aide de l'algorithme LTPA, la normalisation des molécules triatomiques linéaires AB2 et nous comparons, dans le cas de la molécule de CO2, nos résultats à ceux d'autres auteurs qui utilisèrent une approche différente. Par analogie avec la construction des hamiltoniens de systèmes moléculaires AB2 non linéaires, nous montrons ensuite que l'interaction de Fermi permet de décrire le passage d'un condensat de Bose-Einstein (CBE) atomique à un condensat moléculaire.Enfin, le dernier chapitre de cette thèse s'intéresse conjointement au phénomène de résonance1 : 1 entre un système et un champ extérieur et à l'équation de Heun. Nous utilisons le modèledu système quantique à deux niveaux d'énergie interagissant avec un champ extérieur à modulation de phase périodique et à pulsation de Rabi généralisée constante. Nous montrons lors de transitions non adiabatiques, que l'évolution des amplitudes de probabilité des états se déduit de l'équation de Heun générale pour une classe de solutions particulière. Nous mettons également en évidence trois comportements différents pour la fonction de décalage en fréquence : les non-croisements, les croisements et le level-glancing. Pour ces deux derniers comportements, une résonance 1 : 1 se produit périodiquement entre le système et le champ. / This thesis book is concerned with the interactions and resonances in quantum systems and is subdivided into three thematics. First, our work is aimed at constructing in the local limit a systematic method for a normalized vibrational Hamiltonian for a strongly excited n-degree-of-freedom molecular system from the generators of the Lie algebra, the algebra of the invariant polynomials built in classical mechanics from the the kernel of the adjoint operator adH0 . We present both the method of construction in case of absence and in case of a p : q resonance system with n degrees of freedom. Application to the non-linear triatomic molecule ClOH is then given.On the other hand, by using the LTPA Algorithm, we realize normalisation of linear triatomic molecules and we compare in case of the CO2 molecule our results to those of authors who used to another approaches. Then, we are dealing with the Fermi interaction in order to show analogously to the building of Hamiltonians of non-linear molecules AB2, that this interaction is able to describe the transition of a atomic Bose-Einstein condensate (BEC) to a molecular one.Finally, in the last chapter, we explore the non-adiabatic dynamics of a two-state system subject to excitation by a specific constant-amplitude periodic level-crossing model and we show that the evolution of the probability amplitudes of states is deduced from the Heun equation for a particular class of solutions. We also highlight three different behaviors for the detuning : non-crossing, crossing and level-glancing. For these two last behaviors, a 1 : 1 resonance occurs periodically between the system and the field.

Page generated in 0.0721 seconds