• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 11
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

Munasinghe, Kumudu S January 2009 (has links)
Doctor of Philosophy (Ph.D.) / The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as:  To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks  To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as:  The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment.  The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform.  The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management.  This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks.  As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use.
2

A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

Munasinghe, Kumudu S January 2009 (has links)
Doctor of Philosophy (Ph.D.) / The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as:  To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks  To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as:  The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment.  The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform.  The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management.  This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks.  As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use.
3

IMS Interworking

Kalaglarski, Boris Iv., Di Geronimo, Emilio January 2007 (has links)
The goal of this project was to analyze the IP Multimedia Subsystem (IMS) with respect to the interworking functionality between two or more IMS domains belonging to different operators. The thesis presents an overview of IMS, its purpose, the circumstances and the environment in which it has evolved, and a look into some of the challenges that lie ahead. Through careful examination of the history of the mobile communications and of IMS itself, the thesis attempts to give the reader a full and comprehendible understanding of what IMS is, what its purpose is, and why it came into existence. The thesis considers the different models of IMS interworking, as they are currently envisioned by the standardisation bodies and the telecom industry. This analysis aims to identify some of the problematic aspects of the IMS Interworking and to suggest concrete areas for further investigation, which will contribute to the future successful IMS development and deployment. The report looks into such aspects of IMS interworking as the DNS, different models for ENUM DNS resolution; security issues and technical challenges of security with respect to the network as a whole and some of the IMS network elements in particular, such as the DNS. This thesis also presents the findings of the authors, regarding the challenges of interworking between networks built to support different versions of the IP protocol. The thesis focuses on the areas of interest, mentioned above, as these have been identified as being of particular significance in connection with the further development of the IMS architecture. / Målet med denna uppsats var att analysera IP Multimedia Subsystem (IMS) med fokus på samverkan mellan två eller flera IMS domäner som tillhör olika operatörer. Examensjobbet beskriver en övergripande bild av IMS, dess målsättning, förhållanderna och miljön som den har utvecklats i och några utav utmaningarna som ligger framöver. Uppsatsen försöker med hjälp av bakgrundsfakta om mobiltelefonins historia ge läsarna förståelse om vad IMS är, syftet med det och varför det existerar. Uppsatsen beskriver olika samverkningsmodeller av IMS som grundar sig i modeller från de olika standardiseringsorganen samt från telecomindustrin. Målet med denna analys är att identifiera några problemaspekter samt presentera konkreta områden att fortsätta arbeta på gällande IMS och dess gällande samverkan mellan olika operatörer. Detta kan bidra till fortsatt framgång med utvecklingen samt utspridningen av IMS. Uppsatsen tar upp samverkningsproblem med IMS så som DNS, olika uppslagsmetoder av ENUM DNS, säkerhetsfrågor och säkerhetstekniska utmaningar med fokus på nätverket samt några IMS nätverkselement som DNS:en. Uppsatsen lägger också fram författarnas slutsatser gällande samverkan av de olika nätverken med olika versioner av IP protokollet. Examensjobbet fokuserar på de olika områderna som är ovan nämnda, då de har blivit identiferade med speciell betydelse för att kunna fortsätta att framgångsrikt utveckla IMS arkitekturen.
4

Survey of Mobile Communication Systems and Handover

Chen, Liang January 2008 (has links)
<p>After more than two decades’ development, modern mobile cellular networks now have almost approached to the commercial level of fourth generation communication networks. For each of the mobile solutions, there are special attributes but also similarities compared to the other competitive solutions. We can also find relationships between the old generation solutions and the inheritors or innovations.</p><p>During the communicating session using any kind of existing mobile handset, the handover procedure is a very important one that may effect connection quality and also the phone call continuity. Nowadays, the mobile cellular networks have a trend to interact with LAN networks. They will co-exist and work together to support higher data rate over a wider coverage. Seamless handover proposals like Unlicensed Mobile Access (UMA) can support the heterogeneous handover between Global System for Mobile Communications (GSM) and Wireless (Wi-Fi) Network. Several Media Independent Handover (MIH) proposals can handle the vertical handover in the hybrid mobile data network environment such like between wireless local area network (WLAN) and Universal Mobile Telecommunications System (UMTS) by different solutions.</p>
5

Survey of Mobile Communication Systems and Handover

Chen, Liang January 2008 (has links)
After more than two decades’ development, modern mobile cellular networks now have almost approached to the commercial level of fourth generation communication networks. For each of the mobile solutions, there are special attributes but also similarities compared to the other competitive solutions. We can also find relationships between the old generation solutions and the inheritors or innovations. During the communicating session using any kind of existing mobile handset, the handover procedure is a very important one that may effect connection quality and also the phone call continuity. Nowadays, the mobile cellular networks have a trend to interact with LAN networks. They will co-exist and work together to support higher data rate over a wider coverage. Seamless handover proposals like Unlicensed Mobile Access (UMA) can support the heterogeneous handover between Global System for Mobile Communications (GSM) and Wireless (Wi-Fi) Network. Several Media Independent Handover (MIH) proposals can handle the vertical handover in the hybrid mobile data network environment such like between wireless local area network (WLAN) and Universal Mobile Telecommunications System (UMTS) by different solutions.
6

Interworking Methodologies for DCOM and CORBA.

Kraus, Edwin 13 December 2003 (has links) (PDF)
The DCOM and CORBA standards provide location-transparent access to network-resident software through language independent object interfaces. Although the two standards address similar problems, they do so in incompatible ways: DCOM clients cannot use CORBA objects, and CORBA clients cannot utilize DCOM objects, due to incompatible object system infrastructures. This thesis investigates the performance of bridging tools to resolve the incompatibilities between DCOM and CORBA, in ways that allow clients to cross object system boundaries. Two kinds of tools were constructed and studied: tools that bind clients to services at compile time, and tools that support dynamic client-server bindings. Data developed in the thesis shows that static bridges are on the order of five times faster than dynamic bridges. Measurements conducted with remote clients also showed that with increased network delays, performance differences between static and dynamic bridges become negligible.
7

Integration of heterogeneous wireless access networks with IP multimedia subsystem

Peyman, Talebifard 05 1900 (has links)
Next generation heterogeneous wireless networks are expected to interwork with Internet Protocol (IP)-based infrastructures. Conventional network services operate like silos in that a specific set of services are offered over a specific type of access network. As access networks evolve to provide IP-based packet access, it becomes attractive to break these “service silos” by offering a converged set of IP-based services to users who may access these services using a number of alternative access networks. This trend has started with third generation cellular mobile networks, which have standardized on the use of the IP Multimedia Subsystem (IMS) to manage user access to a wide variety of multimedia services over the mobile Internet, while facilitating interworking of heterogeneous wireless and landline access networks. The future users of communication systems will subscribe to both IP-based and Circuit Switched (CS) based services and in the foreseeable future a single database that handles user profiles across all domains will be required. Home Subscriber Server (HSS) as an evolved version of Home Location Register (HLR) is one of the key components of IMS. In deploying HSS as a central repository database, in a fully overlapped heterogeneous network setting, changes of access mode are very frequent and conveying this information to HSS imposes excessive signaling load and delay. In our proposed scheme we introduce an Interface Agent (IA) for each location area that caches the location and information about the access mode through which a user can be reached. This method results in significant amount of savings in signaling cost and better delay performance. The existing call delivery approaches in cellular networks may not be well suited for future communication systems because they suffer from unnecessary usage of network resources for call attempts that may fail which adds to excessive signaling delays and queuing costs. Reducing the number of queries and retrievals from the database will have a significant impact on the network performance. We present a new scheme based on Reverse Virtual Call setup (RVC) as a solution to the call delivery problem in heterogeneous wireless networks and evaluate the performance of this framework.
8

Addressing Network Heterogeneity and Bandwidth Scarcity in Future Wireless Data Networks

Hsieh, Hung-Yun 12 July 2004 (has links)
To provide mobile hosts with seamless and broadband wireless Internet access, two fundamental problems that need to be tackled in wireless networking are transparently supporting host mobility and effectively utilizing wireless bandwidth. The increasing heterogeneity of wireless networks and the proliferation of wireless devices, however, severely expose the limitations of the paradigms adopted by existing solutions. In this work, we explore new research directions for addressing network heterogeneity and bandwidth scarcity in future wireless data networks. In addressing network heterogeneity, we motivate a transport layer solution for transparent mobility support across heterogeneous wireless networks. We establish parallelism and transpositionality as two fundamental principles to be incorporated in designing such a transport layer solution. In addressing bandwidth scarcity, we motivate a cooperative wireless network model for scalable bandwidth utilization with wireless user population. We establish base station assistance and multi-homed peer relay as two fundamental principles to be incorporated in designing such a cooperative wireless network model. We present instantiations based on the established principles respectively, and demonstrate their performance and functionality gains through theoretic analysis, packet simulation, and testbed emulation.
9

Integration of heterogeneous wireless access networks with IP multimedia subsystem

Peyman, Talebifard 05 1900 (has links)
Next generation heterogeneous wireless networks are expected to interwork with Internet Protocol (IP)-based infrastructures. Conventional network services operate like silos in that a specific set of services are offered over a specific type of access network. As access networks evolve to provide IP-based packet access, it becomes attractive to break these “service silos” by offering a converged set of IP-based services to users who may access these services using a number of alternative access networks. This trend has started with third generation cellular mobile networks, which have standardized on the use of the IP Multimedia Subsystem (IMS) to manage user access to a wide variety of multimedia services over the mobile Internet, while facilitating interworking of heterogeneous wireless and landline access networks. The future users of communication systems will subscribe to both IP-based and Circuit Switched (CS) based services and in the foreseeable future a single database that handles user profiles across all domains will be required. Home Subscriber Server (HSS) as an evolved version of Home Location Register (HLR) is one of the key components of IMS. In deploying HSS as a central repository database, in a fully overlapped heterogeneous network setting, changes of access mode are very frequent and conveying this information to HSS imposes excessive signaling load and delay. In our proposed scheme we introduce an Interface Agent (IA) for each location area that caches the location and information about the access mode through which a user can be reached. This method results in significant amount of savings in signaling cost and better delay performance. The existing call delivery approaches in cellular networks may not be well suited for future communication systems because they suffer from unnecessary usage of network resources for call attempts that may fail which adds to excessive signaling delays and queuing costs. Reducing the number of queries and retrievals from the database will have a significant impact on the network performance. We present a new scheme based on Reverse Virtual Call setup (RVC) as a solution to the call delivery problem in heterogeneous wireless networks and evaluate the performance of this framework.
10

Integration of heterogeneous wireless access networks with IP multimedia subsystem

Peyman, Talebifard 05 1900 (has links)
Next generation heterogeneous wireless networks are expected to interwork with Internet Protocol (IP)-based infrastructures. Conventional network services operate like silos in that a specific set of services are offered over a specific type of access network. As access networks evolve to provide IP-based packet access, it becomes attractive to break these “service silos” by offering a converged set of IP-based services to users who may access these services using a number of alternative access networks. This trend has started with third generation cellular mobile networks, which have standardized on the use of the IP Multimedia Subsystem (IMS) to manage user access to a wide variety of multimedia services over the mobile Internet, while facilitating interworking of heterogeneous wireless and landline access networks. The future users of communication systems will subscribe to both IP-based and Circuit Switched (CS) based services and in the foreseeable future a single database that handles user profiles across all domains will be required. Home Subscriber Server (HSS) as an evolved version of Home Location Register (HLR) is one of the key components of IMS. In deploying HSS as a central repository database, in a fully overlapped heterogeneous network setting, changes of access mode are very frequent and conveying this information to HSS imposes excessive signaling load and delay. In our proposed scheme we introduce an Interface Agent (IA) for each location area that caches the location and information about the access mode through which a user can be reached. This method results in significant amount of savings in signaling cost and better delay performance. The existing call delivery approaches in cellular networks may not be well suited for future communication systems because they suffer from unnecessary usage of network resources for call attempts that may fail which adds to excessive signaling delays and queuing costs. Reducing the number of queries and retrievals from the database will have a significant impact on the network performance. We present a new scheme based on Reverse Virtual Call setup (RVC) as a solution to the call delivery problem in heterogeneous wireless networks and evaluate the performance of this framework. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate

Page generated in 0.08 seconds