Spelling suggestions: "subject:"intracortical microstimulation"" "subject:"intracortical microstimulations""
1 |
Motor learning and neuroplasticity in an aged mouse model of cerebral ischemiaTennant, Kelly A. 31 October 2011 (has links)
Stroke is the leading cause of long-lasting disability in the United States and
disproportionately affects adults in later life. Age-related decreases in dexterity and
neural plasticity may contribute to the poorer prognosis of older stroke survivors, even
following rehabilitative physical therapy. The goal of these dissertation studies is to
determine how the cortical plasticity underlying motor skill learning, both before and after brain injury, changes in the aged brain.
The general hypothesis of these studies is that age-related changes in motor
performance and the limited ability to regain function following brain injury are
associated with dysfunctional plasticity of the forelimb representation in the motor
cortex. This hypothesis was tested in intact C57BL/6 mice by training them on a skilled
reaching task and deriving intracortical microstimulation evoked motor cortical
representations of the forelimb to determine training-induced changes in the function of
the motor cortex. After ischemic lesions, age-dependencies in the effects of rehabilitative training in skilled reaching on forelimb motor cortical representations were investigated.
Prior to injury, intact young and aged mice learned a skilled reaching task in similar time
frames and with similar success rates. Training-induced reorganization in the young mouse motor cortex occurred in the caudal forelimb area, which is homologous to the primary motor cortex of primates. However, the rostral forelimb area, a potential premotor cortex, was larger in aged mice compared to young mice. Following focal ischemic lesions of the forelimb area of the sensorimotor cortex, aged mice had larger lesions and were more impaired than young mice, but both groups regained reaching ability after 9 weeks of rehabilitative training. Post-operative training resulted in
plasticity of the rostral forelimb area in young mice, but we failed to see reorganization in the forelimb map of aged mice following rehabilitative training.
These dissertation studies suggest that more severe brain damage in response to
ischemia leads to poorer outcome in aged animals. Although the reorganization of motor cortex following initial skill learning and relearning following brain damage changes with age, the ability to learn motor tasks and improve function with rehabilitative training is maintained in healthy aging. / text
|
2 |
Intracortical Microstimulation of Somatosensory Cortex: Functional Encoding and Localization of Neuronal RecruitmentJanuary 2013 (has links)
abstract: Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth. / Dissertation/Thesis / Videos of neuronal recruitment / Ph.D. Bioengineering 2013
|
3 |
Brain-Machine-Brain InterfaceO'Doherty, Joseph Emmanuel January 2011 (has links)
<p>Brain-machine interfaces (BMIs) use neuronal activity to control external actuators. As such, they show great promise for restoring motor and communication abilities in persons with paralysis or debilitating neurological disorders.</p><p>While BMIs aim to enact normal sensorimotor functions, so far they have lacked afferent feedback in the form of somatic sensation. This deficiency limits the utility of current BMI designs and may hinder the translation of future clinical BMIs, which will need a means of delivering sensory signals from prosthetic devices back to the user. </p><p>This dissertation describes the development of brain-machine-brain interfaces (BMBIs) capable of bidirectional communication with the brain. The interfaces consisted of efferent and afferent modules. The efferent modules decoded motor intentions from the activity of populations of cortical neurons recorded with chronic multielectrode recording arrays. The activity of these ensembles was used to drive the movements of a computer cursor and a realistic upper-limb avatar. The afferent modules encoded tactile feedback about the interactions of the avatar with virtual objects through patterns of intracortical microstimulation (ICMS).</p><p>I first show that a direct intracortical signal can be used to instruct rhesus monkeys about the direction of a reach to make with a BMI. Rhesus monkeys placed an actuator over an instruction target and obtained, from the target's artificial texture, information about the correct reach path. Initially these somatosensory instructions took the form of vibrotactile stimulation of the hands. Next, ICMS of primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PPC) in another was substituted for this peripheral somatosensory signal. Finally, the monkeys made direct brain-controlled reaches using the activity of ensembles of primary motor cortex (M1) cells, conditional on the ICMS cues. The monkey receiving ICMS of S1 was able to achieve the same level of proficiency with ICMS as with the stimulus delivered to the skin of the hand. The monkey receiving ICMS of PPC was unable to perform the task above chance. This experiment indicates that ICMS of S1 can form the basis of an afferent prosthetic input to the brain for guiding brain-controlled prostheses.</p><p>I next show that ICMS of S1 can provide feedback about the interactions of a virtual-reality upper-limb avatar and virtual objects, enabling active touch. Rhesus monkeys initially controlled the avatar with the movements of their arms and used it to search through sets of up to three objects. Feedback in the form of temporal patterns of ICMS occurred whenever the avatar touched a virtual object. Monkeys learned to use this feedback to find the objects with particular artificial textures, as encoded by the ICMS patterns, and select those associated with reward while avoiding selecting the non-rewarded objects. Next, the control of the avatar was switched to direct brain-control and the monkeys continued to move the avatar with motor commands derived from the extracellular neuronal activity of M1 cells. The afferent and efferent modules of this BMBI were temporally interleaved, and as such did not interfere with each other, yet allowed effectively concurrent operation. Cortical motor neurons were measured while the monkey passively observed the movements of the avatar and were found to be modulated, a result that suggests that concurrent visual and artificial somatosensory feedback lead to the incorporation of the avatar into the monkey's internal brain representation.</p><p>Finally, I probed the sensitivity of S1 to precise temporal patterns of ICMS. Monkeys were trained to discriminate between periodic and aperiodic ICMS pulse trains. The periodic pulse-trains consisted of 200 Hz bursts at a 10 Hz secondary frequency. The aperiodic pulse trains had a distorted periodicity and consisted of 200 Hz bursts at a variable instantaneous secondary frequency. The statistics of the aperiodic pulse trains were drawn from a gamma distribution with equal mean inter-burst intervals to the periodic pulse trains. The monkeys were able to distinguish periodic pulse trains from aperiodic pulse trains with coefficients of variation of 0.25 or greater. This places an upper-bounds on the communication bandwidth that can be achieved with a single channel of temporal ICMS in S1.</p><p>In summary, rhesus monkeys were augmented with a bidirectional neural interface that allowed them to make reaches to objects and discriminate them by their textures--all without making actual movements and without relying on somatic sensation from their real bodies. Both action and perception were mediated by the brain-machine-brain interface. I probed the sensitivity of the afferent leg of the interface to precise temporal patterns of ICMS. Moreover, I describe evidence that the BMBI controlled avatar was incorporated into the monkey's internal brain representation. These results suggest that future clinical neuroprostheses could implement realistic feedback about object-actuator interactions through patterns of ICMS, and that these artificial somatic sensations could lead to the incorporation of the prostheses into the user's body schema.</p> / Dissertation
|
4 |
The effect of lesion size on cortical reorganization in the ipsi and contralesional hemispheres.Touvykine, Boris 12 1900 (has links)
Bien que la plasticité ipsilesionnelle suite à un accident vasculo-cérébral (AVC) soit bien établie, la réorganisation du cortex contralésionnel et son effet sur la récupération fonctionnelle restent toujours non élucidés. Les études publiées présentent des points de vue contradictoires sur le rôle du cortex contralésionnel dans la récupération fonctionnelle. La taille de lésion pourrait être le facteur déterminant la réorganisation de ce dernier. Le but principal de cette étude fut donc d’évaluer l’effet des AVC de tailles différentes dans la région caudal forelimb area (CFA) du rat sur la réorganisation physiologique et la récupération comportementale de la main. Suite à une période de récupération spontanée pendant laquelle la performance motrice des deux membres antérieurs fut observée, les cartes motrices bilatérales du CFA et du rostral forelimb area (RFA) furent obtenues. Nous avons trouvé que le volume de lésion était en corrélation avec le niveau de récupération comportementale et l’étendue de la réorganisation des RFA bilatéraux. Aussi, les rats ayant de grandes lésions avaient des plus grandes représentations de la main dans le RFA de l’hémisphère ipsilésionnel et un déficit de fonctionnement plus persistant de la main parétique. Dans l’hémisphère contralésionnel nous avons trouvé que les rats avec des plus grandes représentations de la main dans le RFA avaient des lésions plus grandes et une récupération incomplète de la main parétique. Nos résultats confirment l’effet du volume de lésion sur la réorganisation du cortex contralésionnel et soulignent que le RFA est l’aire motrice la plus influencée dans le cortex contralésionnel. / While our understanding of ipsilesional plasticity and its role in recovery of hand function following ischemic stroke has increased dramatically, the reorganization of the contralesional motor cortex and its effect on recovery remain unclear. Currently published studies offer contradictory views on the role of contralesional motor cortex in recovery. Lesion extent has been suggested as the factor determining the type of reorganization of the contralesional motor cortex. The primary goal of this study was thus to evaluate the effect of unilateral strokes of different sizes in caudal forelimb area (CFA) of the rat on both physiological reorganization and behavioral recovery. At the end of a period of spontaneous recovery during which we monitored motor performance of both limbs, we obtained bilateral maps of the CFA and the putative premotor area of the rat – rostral forelimb area (RFA). We found that lesion volume in the CFA correlates with both the extent of behavioral recovery of the paretic hand and the extent of both ipsi and contralesional cortical reorganization. We found that rats with bigger lesions had larger hand representations in the ipsilesional hemisphere and more persistent deficits of the paretic hand. In the contralesional hemisphere we found that rats with larger hand representation in the RFA had bigger lesions and incomplete recovery of the paretic hand. Our results confirm the effect of lesion volume on the reorganization of the contralesional motor cortex and highlight contralesional RFA as the motor cortical area most influenced by lesion volume for future investigations.
|
5 |
The effect of lesion size on cortical reorganization in the ipsi and contralesional hemispheresTouvykine, Boris 12 1900 (has links)
No description available.
|
Page generated in 0.1463 seconds