Spelling suggestions: "subject:"intravascular volume"" "subject:"intravasculair volume""
1 |
Correlating IVC Measurements with Intravascular Volume Changes at Three Distinct Measurement SitesYang, Kimberly 04 1900 (has links)
A Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine. / Bedside ultrasound of the inferior vena cava (IVC) has grown to be an important tool in the assessment and management of critically ill patients. This study endeavors to examine which location along the IVC is most highly correlated with changes in intravascular volume status: (1) the diaphragmatic juncture (DJ) (2) two centimeters caudal to the hepatic vein juncture (2HVJ) or (3) left renal vein juncture (LRVJ). Data was collected in this prospective observational study on patients in the emergency department who were at least 16 years of age, being treated with intravenous fluids (IVF). Measurements of the IVC were recorded at each site during standard inspiratory and expiratory cycles, and again with the patient actively sniffing to decrease intrapleural pressures. IVF was then administered per the patient’s predetermined treatment, and the same six measurements were repeated after completion of fluid bolus. The difference in caval index (dCI) was calculated for all six data sets and correlated with the mL/kg of IVF administered. There was a statistically significant correlation between mL/kg of IVFs administered and dCI at all three sites (DJ: r = 0.354, p value = 0.0002; 2HVJ: r = 0.334, p value = 0.0003; LRVJ: r = 0.192, p value = 0.03). The greatest correlation between amount of fluids administered and dCI was observed along the IVC at the site 2 cm caudal to the juncture of the hepatic veins (2HVJ). This site is also where the largest change in diameter can be appreciated on ultrasound during intravascular volume resuscitation. Our data also suggests that every mL/kg of IVFs administered should change the dCI by 0.86-1.00%. This anticipated change in IVC diameter can be used to gauge a patient’s response to intravascular volume repletion.
|
2 |
Hydrostatic and thermal influences on intravascular volume determination during immersion: quantification of the f-cell ratioGordon, Christopher, res.cand@acu.edu.au January 2001 (has links)
Previous data have shown that the most prevalent, indirect plasma volume (PV) measurement technique, which utilises changes in haematocrit (Hct) and haemoglobin concentration ([Hb]), underestimates actual PV changes during immersion, when compared to a direct tracer-dilution method. An increase in the F-cell ratio (whole-body haematocrit (Hctw) to large-vessel haematocrit (Hctv) ratio) has been purported as a possible explanation, probably due to hydrostatic and thermally-mediated changes during water immersion. Previous investigators have not quantified the F-cell ratio during immersion. Therefore, this study sought to determine the effect of the F-cell ratio on the indirect method during both, thermoneutral and cold-water immersions. Seven healthy males were tested three times, seated upright in air (control: 21.2°C SD ±1.1), and during thermoneutral (34.5oC SD ±0.2) and cold-water immersion (18.6oC SD ±0.2), immersed to the third intercostal space for 60 min. Measurements during the immersion tests included PV (Evans blue dye column elution, Evans blue dye computer programme, and Hct [Hb]), red cell volume (RCV; sodium radiochromate), cardiac frequency (fc) and rectal temperature (Tre). Plasma volume during the control trial remained stable, and equivalent across the three tests. There was a hydrostatically-induced increase in PV during thermoneutral immersion, when determined by the Evans blue dye method (16.2%). However, the Hct/[Hb] calculation did not adequately reflect this change, and underestimated the relative PV change by 43%. In contrast, PV decreased during cold immersion when determined using the Evans blue dye method by 17.9% and the Hct/[Hb] calculation by 8.0%, respectively, representing a 52% underestimation by the latter method. There was a non-significant decline in RCV during both immersions. Furthermore, an increase (8.6%) and decrease (-14.4%) in blood volume (BV) was observed during thermoneutral and cold-water immersions, respectively. The decline in RCV during thermoneutral immersion attenuated the BV expansion. Despite the disparity between the PV methods, there was no increase in the F-cell ratio during either immersion. In contrast, there was a significant decline in the F-cell ratio during the control: air and thermoneutral immersion, which may indicate that other, undefined variables may impact on the stability of the red cell compartment. The current study is the first to show that the Hct/[Hb] method clearly underestimates PV changes during both thermoneutral and cold-water immersion. Furthermore, RCV was shown, for the first time, to decline during both immersions. However, the changes in the F-cell ratio during this study, did not account for the underestimation of PV change using the Hct/[Hb] method.
|
Page generated in 0.0654 seconds