• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L.S-catégorie relative et invariant de Hopf / Relative L.S-category and Hopf invariant

Chebib, Mouzher 07 July 2009 (has links)
Notre travail s’inscrit dans un domaine initié en 1934 par Lusternik et Schnirelmann qui associent a une variété un invariant appelé catégorie qui permet de minorer le nombre des points critiques d’une fonction différentiable sur cette variété. Nous nous intéressons à une généralisation au cas des applications continues entre espaces topologiques, auxquelles nous associons un invariant appelé sigma-i-catégorie. Nous obtenons plusieurs caractérisations de la sigma-i-catégorie d’une application. Nous examinons ensuite l’effet sur la sigma-i-catégorie d’un attachement d’une cellule à la source d’une application. Cette étude est faite au moyen d’un nouvel invariant, appelé invariant de Hopf relatif. Enfin nous examinons les relations entre les catégories de produit et de produit smash. / Our work is registered in a field initiated in 1934 by Lusternik and Schnirelmann, which associate with a variety an invariant called category, which allows to undervalue the number of the critical points of a differentiable function on this variety. We are interested in a generalization in the case of the continuous applications between topological spaces in wich we associate an invariant called sigma-i-category. We obtain several characterizations of the sigma-i-category on an application We examine then the effect on the sigma-i-category of a cell attachment on an application source. This study is made with a new invariant, called invariant of relative Hopf. Finally we examine the relations between the categories of product and product smach.

Page generated in 0.0845 seconds